• Title/Summary/Keyword: Broken ratio

Search Result 184, Processing Time 0.022 seconds

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

Paper Strength Mechanism Depending on Mixing Ratio of Softwood and Hardwood Fibers (침엽수, 활엽수 펄프섬유의 혼합비에 따른 종이의 강도발현 기작 구명)

  • 이진호;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Paper consists of fiber network and paper properties were highly affected by fiber characteristics. Many researchers have tried to relate fiber and paper properties. Softwood and hardwood fiber's are quite different in their properties. Generally, softwood fiber's are longer and more flexible than hardwood fibers. At present, many paper mills make mixed paper with softwood and hardwood fibers except for special grade. During fracture some fiber's are broken and others are pulled out. In this paper, the number of broken and pulled out fiber's during fracture is analyzed depending on the mixing ratio of softwood and hardwood fiber's. Fiber length, curl, kink, coarseness, WRV and formation index were measured. Double-edged strength samples were prepared to observe the number of broken and pulled out fiber's. Mixed paper strength was decreased with increasing hardwood fibers ratio. During fracture, softwood fiber's were more likely broken and hardwood fibers were more likely pulled out. The strength of paper which consists of softwood fibers was determined by fiber's broken strength and that of hardwood fibers by fiber's debonding strength. Paper strength was changed depending on the fiber's bonding capability. If the fiber is longer and more flexible, the fiber network becomes stronger and stiffer.

  • PDF

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers(II) - medium scale rice polisher - (중.소형 연미기의 성능평가 및 성능개선에 관한 연구(II) - 중형 연미기에 대하여 -)

  • 정종훈;권홍관
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-456
    • /
    • 1998
  • This study was carried out to evaluate the performance of a medium scale rice polisher of 2.5 t/h and to improve its performance for producing the clean rice with high quality. The maximum internal pressure, broken rice ratio. whiteness in the rice polisher were investigated, and the effects of outlet resistance, water spraying rate, shaft revolution speed and rice moisture content on the polishing performance were analyzed to find out proper operating conditions. The conclusions of this study were as follows: 1. In the performance evaluation of the polisher, the broken rice ratio increment of 0.1%, the max. internal pressure of about 11 N/${cm}^2$, and whiteness increment of 2.2~3.7 resulted at the conditions of 20 PS driving power, 950 rpm, 150 cc/min water spraying rate, 44.1 Nㆍcm outlet resistance and about 15% rice moisture content. 2. Though max. internal pressure and whiteness at the 17% rice moisture content were higher than those at the 15% moisture content under the same operating conditions of the polisher, but the broken rice rate at the 17% moisture content was absolutely low compared with that at 15% moisture content. The water spraying effect to reduce broken rice and to increase whiteness was much significant at the 15% moisture content not significant at 17% moisture content. 3. The main parameter of the performance was outlet resistance, and low resistance of about 44.1 Nㆍcm was recommended at the polisher. 4. The proper water spraying rate in the polisher was about 150 cc/min. 5. As the shaft revolution speed decreased from 950 rpm and 800 rpm to 650 rpm, the broken rice ratio increased and whiteness decreased. 6. As the driving power of the polisher increased from 20 PS to 30 PS, the max. internal pressure decreased by about 1~2.5 N/${cm}^2$ and whiteness increased by about 1~2, but the broken rice rate was not changed. 7. The proper operating conditions of the polisher seemed to be the revolution speed of 800-950 rpm, the water spraying rate of about 150 cc/min, the oulet resistance of about 44.1 N.cm and 30 PS driving power.

  • PDF

Preparation of Flakes by Extrusion Cooking Using Barley Broken Kernels (보리 파쇄립을 이용한 압출성형에 의한 후레이크 제조)

  • Choi, Hee-Don;Seog, Ho-Moon;Choi, In-Wook;Park, Mi-Won;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-282
    • /
    • 2004
  • Barley flakes were developed by extrusion cooking using broken kernels, by-products of the barley pearling process. Broken kernels from both non-waxy and waxy barley broken kernels were sufficiently gelatinized at the barrel temperature of over $100^{\circ}C$ and the moisture content of broken kernels of over 35%. Cutting and flaking roll separating properties of pellets prepared from non-waxy barley broken kernels were better than those of waxy barley broken kernels. Characteristics of pellets prepared by extrusion cooking in different mixing ratios of non-waxy and waxy barley broken kernels were investigated. As the mixing ratio of waxy barley broken kernels increased, RVA peak viscosity, apparent viscosity, and yield stress of prepared pellets decreased, while flow behavior index increased. As the mixing ratio of waxy barley broken kernels increased, compressive strength and bulk density of deep-fat fried flakes drastically decreased, and the size of air cells on cross-section increased, and thickness of cell-constituting bodies decreased. Sensory evaluation results showed that acceptability for texture and taste of flakes inclosed as the mixing ratio of waxy barley broken kernels increased, and optimum mixing level of waxy barley broken kernels appeared to be 30-40%.

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers (I) -small scale rice polisher - (중.소형 연미기의 성능평가 및 성능개선에 관한 연구 (I) -소형 연미기에 대하여 -)

  • 정종훈;최영수;권홍관
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 1998
  • The structural characteristics of a small scale rice polisher was analyzed to improve its performance. Spraying characteristic of nozzles used for rice polishing was also analyzed by a machine vision system. The internal pressure of the polishing chamber was measured according to outlet resistance, water spraying, and roller shaft speed. In addition, the performance of the rice polisher was evaluated to improve it in the basis of internal pressure in polishing chamber, whiteness, and broken rice ratio of clean rice according to the operating conditions. Actual nozzle discharge rate and drop size were 125 cc/min and 86~97 ${\mu}{\textrm}{m}$, respectively. In the case of water spraying on rices, the internal pressure showed 4.9~9.8N/$\textrm{cm}^2$ increase. broken rice ratio decreased, and there was no difference in whiteness. The internal pressure inueased up to two times with the increase of the outlet resistance. Also, the pressure at the upper part of screen was one and half times as high as the pressure at the lower part. In the case of water spraying rate of 150 cc/min, the roller shaft speed of 850 rpm resulted in no difference in whiteness and decrease of 0.3% in broken rice ratio, comparing to the roller shaft speed of 950 rpm.

  • PDF

Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions (전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포)

  • 조영태;임광희;고재용;김홍건
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.87-90
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.

  • PDF

Effect of the Amount of Attached Mortar of Recycled Aggregates on the Properties of Concrete (순환골재의 부착 모르타르량이 콘크리트의 특성에 미치는 영향)

  • Lee, Won-Ki;Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • In this study, the different unit cement content by the ratio of water absorption and water-cement ratio are applied to examine the properties of the concrete used the aggregate recycled by the crushing treatment. According to the experimental results, in the mix of low strength and high water-cement ratio, both of the compressive strength is almost equal in the concrete using the recycled aggregate by the crushing treatment and the concrete using broken stones. It means that the recycled aggregate has the low effect of the amount of bonded mortar. But, in the mix of high strength and low water-cement ratio, the concrete using the recycled aggregate by the crushing treatment has 40% less of the compressive strength than that using broken stones by the effect of the amount of bonded mortar. On the other hand, after 8 weeks, the dry shrinkage of the recycled aggregate with 7% of the ratio of water absorption doubles that of the broken stones with 1% ($-350{\times}10^{-6}$), in other words $-700{\times}10^{-6}$. Thus, the dry shrinkage should be prior to any other conditions in recycling waste concrete for the aggregate for concrete. When the recycled aggregate with 3% of the ratio of water absorption is used, the compressive strength of the rich mix concrete ($450kg/m^3$ of the unit cement content) is equivalent to that of the concrete using broken stones, while in using the recycled aggregate with 7% of the ratio of water absorption, the rich mix concrete has 7% lower compressive strength than the concrete using broken stones. But, the compressive strength of the ordinary mix concrete ($350kg/m^3$ of the unit cement content) is far lower than that using broken stones.

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers(I)-small scale rice polishers- (중.소형 연미기의 성능평가 및 성능개선에 관한 연구(I)-소형 연미기에 대하여-)

  • 정종훈;최영수;권홍관
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1998.06b
    • /
    • pp.206-216
    • /
    • 1998
  • The structural characteristics of small scale rice polisher was analyzed to improve its performance. Spraying characteristic of nozzles used for rice polishing was also analyzed by a machine vision system. The internal pressure of the polishing chamber was measured according to outlet resistance, water spraying , and roller shaft speed. In addition , the performance of the rice polisher was evaluated to improve it in the basis of internal pressure in polishing chamber, whiteness , and broken rice ratio of clean rice according to the operating conditions. Actual nozzle discharge rate and drop size were 125cc/min and 86.97㎛, respectively. In the case of water spraying on rices, the internal pressure showed 4.9-9.8N/㎠ increase, broken rice ration decreased , and there was no difference in whiteness . The internal pressure increased up to two time with the increase of the outlet resistance. Also, the pressure at the upper part of screen was one and half times as high as the pressure at the lower part. In the case of water spraying rate of 150 cc/min, the roller shaft speed of 850 rpm resulted in no difference in whiteness and decrease of 0.3%in broken rice ratio, comparing to the roller shaft speed of 950 rpm.

  • PDF

Heat Transfer Enhancement in a Divergent Passage with 30° Inclined Ribs (30° 경사 리브가 있는 확대 채널 통로 내의 열전달 증가)

  • Lee, Myung Sung;Ahn, Soo Whan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.401-407
    • /
    • 2017
  • The effect of different rib geometries such as V-shaped continuous (case A), parallel broken (case B), and V-shaped broken (case C) ribs on local heat transfer distributions and pressure drops in a divergent channel with $30^{\circ}$ inclined ribs on one wall or two walls was investigated for Reynolds numbers from 22,000 to 75,000. Top and bottom walls were insulated; two side walls were uniformly heated in the divergent channel. Heated walls were composed of 10 isolated coper sections and length-to-outlet hydraulic diameter ratio of 10. Rib height-to-outlet hydraulic diameter ratio was 0.1, and rib pitch-to-height ratio equaled 10. Results revealed that V-shaped continuous rib (case A) produced approximately 1.4 times higher average Nussselt number than in the parallel broken rib (case B), and V-shaped broken rib (case C) in the channel with two ribbed walls at Re = 54,000.

A Study on Conditioning of the Brown Rice (II) -Milling characteristic with eight hours′ripeness after conditioning moisture content- (현미 조절에 관한 연구(II) -함수율 조질 후 8시간 숙성에 따른 정백특성-)

  • 한충수;강태환;조성찬;고학균
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • The goal of this research was to an optimum conditions for the brown rice conditioning from data of milling characteristics after conditioning of the brown rice. The range of the initial moisture content of the sample was 13%, 14%, and 15%, the range of the increment of the moisture content was 0.4% and 0.8% with respect to the initial moisture content, and a ripe time after conditioning was eight hours. The results obtained from this research can be summarized as fellows. 1 The crack ratio after conditioning the brown rice with the initial moisture content was increased as the initial moisture content decreased and increment of the moisture content increased. The crack ratio of the milled rice was increased than that of the non-conditioned brown rice and decreased with the conditioned brown rice with the increment of the moisture content of 0.4% and 0.5%. 2. The broken rice ratio after conditioning the brown rice with the initial moisture content was a little higher than that of the non-conditioned brawn rice. The broken ratio of the conditioned brown rice with the increment of the moisture content of 0.4% was increased around 0.2∼0.4% with respect to the non-conditioned brown riced and the broken ratio of the brown rice was high with increased amount of water sprayed during conditioning process. 3. The moisture content of the milled rice after conditioning the brown rice with the initial moisture content increased around 0.3∼0.8% with respect to the non-conditioned milled rice. 4. The electric energy consumption on milling process with the conditioned brown rice by the initial moisture content was decreased 3.4∼39.1% with respect to the non-conditioned brown rice.