• Title/Summary/Keyword: Broadside coupler

Search Result 5, Processing Time 0.017 seconds

Characteristics of 3-dB Coupler using Broadside Slot Coupled Lines (Broadside 슬롯 결합 선로를 이용한 3 dB 결합기 특성)

  • Young Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.417-422
    • /
    • 2023
  • This paper presents various methods for implementing 3-dB coupler using a broadside slot coupled lines and analyze its characteristics. The ideal coupler of the tandem structure is analyzed on the premise that both the reflection coefficient and the isolation coefficient of the first and second coupler connections are zero. However, since the reflection and isolation coefficients of most couplers are not zero, the S-parameter cascade calculation method was used to check how to the characteristics of the coupler change due to this. In order to confirm that these characteristics appear, a 3-dB coupler was fabricated with one stage and two and three stages of a tandem structure using a broadside slot coupled lines at a center frequency of 2 GHz, and it was confirm that the characteristics of tandem coupler change due to the non-zero reflection coefficient and isolation coefficient of the connection part of the coupler.

Push-Push Voltage Controlled Dielectric Resonator Oscillator Using a Broadside Coupler

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.139-143
    • /
    • 2015
  • A push-push voltage controlled dielectric resonator oscillator (VCDRO) with a modified frequency tuning structure using broadside couplers is investigated. The push-push VCDRO designed at 16 GHz is manufactured using a low temperature co-fired ceramic (LTCC) technology to reduce the circuit size. The frequency tuning structure using a broadside coupler is embedded in a layer of the A6 substrate by using the LTCC process. Experimental results show that the fundamental and third harmonics are suppressed above 15 dBc and 30 dBc, respectively, and the phase noise of push-push VCDRO is -97.5 dBc/Hz at an offset frequency of 100 kHz from the carrier. The proposed frequency tuning structure has a tuning range of 4.46 MHz over a control voltage of 1-11 V. This push-push VCDRO has a miniature size of 15 mm×15 mm. The proposed design and fabrication techniques for a push-push oscillator seem to be applicable in many space and commercial VCDRO products.

A 100~110 GHz LNA and A Coupler Using Standard 65 n CMOS Process (상용 65 n CMOS 공정을 이용한 100~110 GHz 저잡음 증폭기와 커플러)

  • Kim, Jihoon;Park, Hongjong;Kwon, Youngwoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.278-285
    • /
    • 2013
  • In this paper, a 100~110 GHz LNA and A coupler using standard 65 n CMOS process is presented. The LNA consists of three common source FET stages. A few layout types are considered to get high gain characteristic of unit common source cell. Also, optimized performance to achieve low noise characteristic and enough gain. Coupler is composed of broadside coupler using multimetal in CMOS fabrication. In the coupler, the metal strip to meet density rule is used, and the coupler is designed with consideration of the metal strip to function properly. Gain of fabricated LNA is 5.64 dB at 100 GHz and 6.39 dB at 110 GHz. Bandwidth is over 10 % and noise figure is 11.66 dB at 100 GHz. Fabricated coupler has shown insertion loss of 2~3 dB at 100~110 GHz band. Magnitude mismatch of coupler is below 1 dB and phase mismatch of coupler is below $5^{\circ}$.

Design of Directional Couplers in Bilevel Microstrip Using the Least Squares Residual Method (최소자승법을 이용한 이중층 마이크로스트립 방향성 결합기의 설계)

  • 양기덕;김원기;이용민;나극환;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.253-264
    • /
    • 1998
  • In this paper, a design method for directional couplers using bilevel microstrip substrates is proposed. This kind of broadside-coupled coupler provides large coupling factors and broadband characteristics which can not be provided by conventional edge-coupled couplers. Physical dimensions needed for design are obtained by numerical analysis of characteristic parameters of the coupler using the least squares residual method, a kind of variational method, and an eigenvalue problem analysis method. A 3[dB] directional coupler is designed by the proposed method at the center frequency of 1 GHz, built, and tested. The validation and accuracy of the method are confirmed by comparing the numerical results with the experimental results.

  • PDF

A 3 dB Coupler for Double Sided Printed Circuit Boards (이층 기판용 3 dB 커플러)

  • Lee, Dong-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.559-565
    • /
    • 2014
  • A 3 dB coupler has been designed and implemented using the most commonly used double-sided FR4 boards. The coupling and the bandwidth of the coupler are enhanced with the enlarged overlapped area of the coupler. Major design parameters are plotted as a design guide and the parameters are verified by simulation and measurement. The size of the manufactured coupler is $30{\times}14mm^2$. Its measured insertion loss and phase difference are 0.6 dB and $90.5^{\circ}$ at center frequency of 2.5 GHz, respectively. The operating frequency range is 1.72 GHz to 3.08 GHz for $3.6{\pm}0.5dB$ insertion loss. The coupler has the performance similar to that of conventional Lange coupler, and implementation of the coupler is easy and cheap with wide metal width and spacing and no additional wire bonding process.