• Title/Summary/Keyword: Broadband Frequency Noise

Search Result 157, Processing Time 0.024 seconds

Numerical Prediction of Aerodynamic Noise from Rotors (회전익 공력소음의 수치적 예측)

  • 이정한;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.581-587
    • /
    • 1997
  • Numerical predictions of aerodynamic noise radiated by subsonic rotors are carried out. A time domain approach for Ffowcs-Williams Hawkings equation of acoustic analogy is used in developing a comprehensive rotor/fan noise prediction program to handle both arbitrary blade shapes and loading conditions. Since only the aeroacoustic aspects of rotors are considered here, the calculations are carried out for rotors with simple aerodynamic characteristics. Broadband noise from ingestion of turbulence is also considered. By incorporating discrete frequency noise prediction of steady loading with broadband spectrum, much better correlation at the low frequency region with experimental data is obtaind. The contributions from different noise mechanisms can also be analysed through this method.

  • PDF

The background noise characteristics of the broadband seismic stations in KMA (기상청 광대역 지진관측소 배경잡음 특성)

  • Nam, Seong-Tae;Ryoo, Yong-Gyu;Youn, Yong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.49-55
    • /
    • 2006
  • The purpose of the present study is to analyse characteristics of the background noise for the broadband seismic stations in KMA. It is well known that the background noise arises continuously from long period microseism, sea waves, minute changes of atmospheric pressure, seasonal temperature change of the ground surface, culture activities, and etc. The background noise shows spatial and temporal changes and it has various characteristics such as its spectral amplitudes in frequency domain are not constant Such the background noise gives considerable influences on the quality of seismic record. To investigate annual variations, the background noise was separated into high frequency components of above 1Hz More larger average amplitude is found in winter than other seasons. The average amplitude for 12 seismic stations are compared. It is known that the background noise is considerably larger in stations located in island region such as Jeju, Ulleungdo, and Bagryeongdo seismic stations. However the noise is relatively small in inland stations such as Chuncheon, Chungju and Uljin seismic stations.

  • PDF

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

Aero-acoustic Performance Analysis Method of Regenerative Blower (재생형 송풍기의 공력음향학적 성능 해석 방법)

  • Lee, Chan;Kil, Hyun Gwon;Kim, Gang Chun;Kim, Jun Gon;Ma, Jae Hyun;Chung, Kyung Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.15-20
    • /
    • 2013
  • An aero-acoustic performance analysis method of regenerative blower is developed as one of the FANDAS codes. The aerodynamic performance of regenerative blower is predicted by using momentum exchange theory coupled with pressure loss and leakage flow models. Based on the performance prediction results, the noise level and spectrum of regenerative blower are predicted by discrete frequency and broadband noise models. The combination of the performance and the noise prediction methods gives aero-acoustic performance map and noise spectrum analysis results, which are well-agreed with the actual measurement results within a few percent relative error.

Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics (공력음향학적 특성을 고려한 시로코 팬의 설계 방법)

  • Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

Prediction of Broadband Noise for Non-cavitation Hydrofoils using Wall-Pressure Spectrum Models (벽면변동압력을 이용한 비공동 수중익의 광대역소음 예측 연구)

  • Choi, Woen-Sug;Jeong, Seung-Jin;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Kim, Min-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.765-771
    • /
    • 2019
  • With the increase in the speed of ships and the size of ocean structures, the importance of flow noise has become increasingly critical in meeting regulatory standards. However, unlike active investigations in aeroacoustics fields for airplanes and trains, which are based on acoustic analogy methods for tonal and broadband frequency noise, only the discrete blade passing frequency noise from propellers is considered in marine fields. In this study, prediction methods for broadband noise in marine propellers and underwater appendages are investigated using FW-H Formulation1B, which can consider the mechanism of primary noise generation of trailing edge noise. The original FW-H Formulation 1B is based on the pressure correlation function tolackitsgeneralityandaccuracy. To overcome these limitations, wall-pressure spectrum models are adopted to improve the generality in fluid mediums. The comparison of the experimental results obtained in air reveals that the proposed model exhibits a higher accuracy within 5 dB. Furthermore, the prediction procedures for broadband noise for hydrofoils are established, and the estimation of broadband noise is conducted based on the results of the computational fluid dynamics.

Anechoic Chamber Design using Broadband Compact Absorber (패널형 흡음재를 이용한 무향실의 설계)

  • ;;Peter Brandstatt;Helmut V. Fuchs
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • Conventional method for designing and installing anechoic chambers is to utilize porous wedges for the sound absorbers. As cutoff frequency lowers down such as 63Hz or 50Hz, the corresponding long wedges diminish the free field area of the chamber. In this study, a new broadband compact absorber(BCA) is introduced which absorbs acoustic energy down to 50Hz. Most prominent is that it measures only 250mm thick. A freely vibrating panel between the non-fibrous absorbers allows tuned absorption at the low frequency region in addition to the high frequency absorption resulted from the conventional absorber installed at the front. Standing waves at low frequency range are suppressed as the BCA modules which are tuned to the corresponding modes absorb sound energy effectively, resulting in anechoic condition. Not only the low frequency performances, but the high frequency absorption is measured to meet adequate conditions for the anechoic chamber. Realized BCA chambers are presented.

  • PDF

An Experimental study on the Broadband Noise Generation in Axial Flow Fan (축류팬에서의 광대역소음 발생에 대한 실험적 연구)

  • Rhee, Wook;Choi, Jong-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.91-96
    • /
    • 1998
  • The broadband noise generated aerodynamically from a two-bladed axial flow fan has been measured and compared to the result of a self-noise prediction method. The prediction scheme is based on the experimental data set acquired from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections. For low blade loading case the comparison showed a reasonably good agreement, but as the loading becomes larger the empirical formula overpredict the sound pressure level at high frequency range. This is probably due to the use of stationary wing data for the prediction of rotating blade case, which will be quite different in their vortex strength at the blade tip.

  • PDF

Analysis of Low Computational Complexity DSP Algorithm for Phase Noise Compensation in Coherent Optical Communication Systems (코히어런트 광통신에서 위상잡음 보상을 위한 저계산 복잡도 DSP 알고리즘 제안 및 분석)

  • Park, Hyoung-Joon;Jung, Sang-Min;Han, Dong-Yoon;Han, Sang-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.413-417
    • /
    • 2014
  • In coherent superhigh speed optical transmission link, compensating the system impairments are critical issues. Among these issues, phase noise and carrier frequency offset are the most important impairments which interrupt the signal recovery. This paper suggests a algorithm of digital signal processing that compensates the phase noise and carrier frequency offset and verified its validity. The suggested digital signal processing algorithm has a lower computational complexity compared with the previous algorithms, so it can ease the burden of signal processing at the receiver to provide high speed optical transmission system.

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.