• Title/Summary/Keyword: Broadband Convergence Network (BcN)

Search Result 82, Processing Time 0.017 seconds

Performance Analysis of a Congestion cControl Mechanism Based on Active-WRED Under Multi-classes Traffic (멀티클래스 서비스 환경에서 Active-WRED 기반의 혼잡 제어 메커니즘 및 성능 분석)

  • Kim, Hyun-Jong;Kim, Jong-Chan;Choi, Seong-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.125-133
    • /
    • 2008
  • In this paper, we propose active queue management mechanism (Active-WRED) to guarantee quality of the high priority service class in multi-class traffic service environment. In congestion situation, this mechanism increases drop probability of low priority traffic and reduces the drop probability of the high priority traffic, therefore it can improve the quality of the high priority service. In order to analyze the performance of our mechanism we introduce the stochastic analysis of a discrete-time queueing systems for the performance evaluation of the Active Queue Management (AQM) based congestion control mechanism called Weighted Random Early Detection (WRED) using a two-state Markov-Modulated Bernoulli arrival process (MMBP-2) as the traffic source. A two-dimensional discrete-time Harkov chain is introduced to model the Active-WRED mechanism for two traffic classes (Guaranteed Service and Best Effort Service) where each dimension corresponds to a traffic class with its own parameters.

Study of Parallel Network Processor using Global Cache (글로벌 캐시를 이용한 네트워크 병렬 프로세서 구조 연구)

  • Park, Jae-Won;Chung, Won-Young;Kim, Hyun-Pil;Lee, Jung-Hee;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1B
    • /
    • pp.80-85
    • /
    • 2011
  • The mount of network traffic from the Internet is increasing because of the use of Broadband Convergence Networks(BcN). Network traffic is also increasing because of the development of application, especially multimedia traffic from IPTV, VOD, and online games. This multimedia traffic not only has a huge payload but also should be considered a threat in real time. For this reason, this study examines the ways that routers distribute the bandwidth in accordance to traffic properties. To classify the property of the traffic, it is essential to analyze the application layer. However, the general network processor architecture serially processes the L2-4 and L7 layer. We propose a novel parallel network processor architecture with a global cache that processes L2-4 and L7 in parallel. To verify the proposed architecture, we simulated both of the architecture with SystemC. EEMBC and SNORT was used to measure L2-4 and L7 processing time. When multimedia traffic was entered into the network processor in the same flow, the proposed architecture showed about 85% higher performance than general architecture.