• 제목/요약/키워드: Brittle mode grinding

검색결과 11건 처리시간 0.01초

구조용 세라믹스의 연삭특성에 관한 연구 (A Study on the Grinding Characteristics of Ceramics)

  • 하상백;전영길;최환;이종찬
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.182-186
    • /
    • 1999
  • Structural ceramics such as $Al_2O_3$, SIC, and $Si_3N_4$ are difficult to grind materials because of their high hardness and brittleness. They are normally ground in brittle mode, but it is possible to be ground in ductile mode depending upon the grinding conditions. In this paper an experimental investigation has been carried out to see the relationship between the grinding energy and grinding mode. It has been found that the ductile mode grinding consumes more grinding energy than the brittle mode grinding. Thus, the grinding conditions of the higher specific grinding energy leads to the plastic deformation in the ground surface of workpiece and results in the better surface finish.

  • PDF

BK7의 평행축 연성모드 연삭가공 (Dutile Regime Parallel Grinding of BK7)

  • 이현성;김민재;구할본;황연;김혜정;김정호
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.85-89
    • /
    • 2012
  • Conventional grinding of BK7 glass will normally result in brittle fracture at the surface, generating severe sub-surface damage and poor surface finish. The precision grinding of BK7 glass in parallel grinding modes has been investigated. Grinding process, maximum chip thickness, ductile/brittle regime, surface roughness and sub-surface damage have been addressed. Special attention has been given to the condition for generating a ductile mode response on the ground surface. Experiments reveal that the level of surface roughness and depth of sub-surface damage vary differently for different condition. This study gives an indication of the strategy to follow to achieve high quality ground surfaces on brittle materials.

다구찌 방법을 이용한 다발압출 금형설계에 관한 연구 (A Study on the Die Set Design for Multi-Hole Extrusion Process Using Taguchi Method)

  • 조성진;이재원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

Quartz의 연삭 특성에 관한 연구 (II) (A Study on the Grinding Characteristics of the Quartz(II))

  • 임종고;하상백;김성헌;최환;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.875-879
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

Quartz의 연삭 특성에 관한 연구 (A Study on the Grinding Characteristics of the Quartz)

  • 임종고;하상백;김성헌;최환;이종찬
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.106-111
    • /
    • 2001
  • This study reports the grinding characteristics of quartz. Grinding experiments were performed at various grinding conditions including wheel mesh, table speed and depth of cut. The grinding forces and specific grinding energies were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. A new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of quartz. A set of experiments was performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the ductile mode is the dominant material removal mode at the grinding conditions which show the higher value of SDR whereas the material is removed by brittle fracture in a lower value of SDR value increases with wheel mesh size.

  • PDF

실리콘 웨이퍼 연삭가공 특성 평가에 관한 연구 (Study on Characteristics of Ground Surface in Silicon Wafer Grinding)

  • 이상직;정해도;이은상;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.128-133
    • /
    • 1999
  • In recent years, LSI devices have become more powerful and lower-priced, caused by a development of various wafer materials and an increase in the diameter of wafers. On the other hand, these have created some serious problems in manufacturing of wafers because materials used as semiconductor substrate are very brittle. In view of this fact, there are some trials to apply shear-mode(or ductile-mode) grinding for efficient manufacturing of semiconductor wafers instead of conventional lapping process. In fact grinding process that has not only more excellent degree of accuracy but also more adaptable to fully automated manufacturing than lapping, is already used in Si machining field. This paper described the elementary studies to establish the grinding technology of wafers. First, we investigated the variation of grinding force and the transition of grinding mode as various grinding conditions. Then, it was inspected that the change of grinding force affected the integrity such as the topography and the roughness of ground surfaces, and led to the chemical defects generation and distribution in damaged layer. The degree of defects was estimated by FT-IR(Fourier Transformed Infrared) Spectroscopy and Auger Electron Spectroscopy

  • PDF

다이아몬드 지립을 이용한 구조세라믹스의 경면가공 특성 (Mirror-surface Machining Properties of Structural Ceramics using Diamond Abrasives)

  • 김유영;곽태수;김경년
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.290-295
    • /
    • 2010
  • This study has been focused on properties of mirror surface grinding technology by ELID(Electrolytic In-process Dressing) for structural ceramics using in high precision structural parts as like semi-conductor manufacturing processes. The experimental studies have been carried out to get mirror surface for grinding of structural ceramics, SiC, $Al_2O_3$ and AlN. Grinding process of the ceramics is carried out with varying mesh type, depth of cut and feed rate using diamond wheel. The machining result of the surface roughness and condition of ground surface, have been analyzed by use of surface roughness tester, SEM, AFM and three dimensional surface profiler measurement system.

엔지니어링 세라믹스의 평면 연삭 가공 특성에 관한 연구 (A Study on the Surface Grinding Characteristic of Engineering Cramics)

  • 강재훈;허성중;김원일
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.38-49
    • /
    • 1994
  • In this study, grindability of some representative engineering ceramics are experimentally investigated using resin bond diamond wheel with conventional surface grinding machine, and proper grinding conditions which can be obtained from various experimental results are established also for mechanical components which are proper to domestic circumstances with high reliability. And through the results of experiment, it is confirmed that grinding energies of the ceramics, especially in the case of $Al_2O_3$, are lower than steel with same machining condition in the conventional grinding because of their fine-brittle fracture mode type removal process, though the ceramics are well-known to unmachinable materials. And moreover, the total pass numbers needed for spark-out process to be completed are depend on their mechanical properties because that grinding stiffness is different from each other. The grinding force, ginding power and ground surface roughness are also measured and compared. Furthermore, the experiments carried out in this study, some useful results are obtained with can guide to grind engineering ceramics with conventional surface grinding machine.

  • PDF

렌즈 성형용 유리탄소 금형의 초정밀연삭 (Ultraprecision Grinding of Glassy Carbon Core for Mold Press Lens)

  • 황연;차두환;김정호;김혜정
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.261-265
    • /
    • 2012
  • In this study, glassy carbon was ground for lens core of glass mold press. Ultraprecision grinding process was applied for machining of core surfaces. During the process, brittle crack occurred because of hard-brittleness of glassy carbon. Author investigated optimized grinding conditions from the viewpoint of ductile mode grinding. Geometrical undeformed chip thickness was adopted for critical chip thickness that enables crack free surface. Machined cores are utilized for biaspheric glass lens fabrication and surfaces of lens were compared for verification of ground surface.

Glassy Carbon의 초정밀 가공 (Ultraprecision Machining of Glassy Carbon)

  • 황연;이현성;김혜정;김정호
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.19-23
    • /
    • 2012
  • Glassy carbon is widely used for high temperature melting process such as quartz due to its thermal stability. For utilizing Classy Carbon to glass mold press(GMP) optical lens, brittleness of Glassy Carbon is main obstacle of ultraprecision machining. Thus authors investigated ductile machining of Glassy Carbon adopting turning and grinding process respectively. From the experiments, ultraprecision turning surfaces resulted brittle crack in all machining conditions and ultraprecision grinding surfaces showed semi-ductile mode in small undeformed chip thickness conditions.