• 제목/요약/키워드: Brittle deformation

검색결과 245건 처리시간 0.019초

진공 저온 분사 공정을 통해 형성된 Fe계 비정질 재료의 적층거동 및 미세구조 변화 관찰 (Deposition Behavior and Microstructure of Fe-based Amorphous Alloy Fabricated by Vacuum Kinetic Spraying Process)

  • 권주혁;박형권;이일주;이창희
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.60-65
    • /
    • 2014
  • Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.

용접 공정에 따른 2.25Cr-1Mo강 용접이음부의 특성 변화에 관한 연구 (A Study on the Characteristic Change of 2.25Cr-1Mo Steel Welds for Various Welding Processes)

  • 방한서;오종인;방희선;김형
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.49-56
    • /
    • 2005
  • In spite of the merits of laser welding being able to obtain the high welding quality such as smaller width of melting and heat affected zone, smaller welding deformation and fine grains of weldment compared to arc welding, laser welding is mainly used in joining of thin steel parts of electronics industry. Laser welding is getting widely used in joining thick plate and special kinds of steel due to its high power. While the arc welding is still applied for 2.25Cr-1Mo steel which is the essential material of atomic power generation equipment, the laser welding is not yet applied despite its high quality. So it has a trial to a special case demanding high welding quality such as atomic power plant. Accordingly, in this research, the mechanical properties of weldments by arc and laser welding were investigated using FEM to confirm the applicability of laser welding to 2.25Cr-1Mo steel. The Charphy test was carried out to understand the effect on the fracture toughness of weldments. The results of examination and test of the mechanical properties showed the validity of this research.

제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동 (The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature)

  • 박철준;권오헌;강지웅
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

심도에 따른 불연속면의 형태 변화에 대한 고찰 -호남탄전과 수원인근 지역을 예로 하여- (Consideration of Changed Attitude of Discontinuity through the Depth -Example at Honam Coal Field and Around Suwon Area-)

  • 이병주;선우춘
    • 지질공학
    • /
    • 제18권2호
    • /
    • pp.159-166
    • /
    • 2008
  • 지각 천부인 취성변형의 조건 하에서도 지표에서 발달하는 절리들의 방향성 분포가 지하 심부로 가면서 지하 몇 미터에서부터 불연속면의 변화를 보이는지에 대해 의문이 생긴다. 이에 대한 의문의 해결을 위해 본 연구에서는 지표지질조사를 통해 측정한 불연속면의 자료와 BIPS 및 Televiewer에 의해 측정된 불연속면의 자료들을 두 개 지역에 대해 비교 분석하였다. 호남탄전지역은 지하 심부로 가면서 지표에서 30 m와 40 m 지점에서 불연속면의 방향성이 변하며 수원지역의 경우는 20 m에서 불연속면의 방향들이 변화하였다. 이와 같은 변화가 등방성의 암석에서 변화를 관찰함이 심도별 변화를 대비 할 수 있으나 호남탄전의 경우는 퇴적암으로 측정된 암반이 세립질의 사암과 세일이 교호하는 이방성의 암반이며 스르스트단층이 통과하고 있다. 그러나 수원지역의 경우는 대개 운모편암들로 호남탄전 지역보다는 암질의 변화가 적다. 그러나 두 지역 공히 지하 20 m와 30 m 이하에서 이미 지표와는 달리 불연속면의 분포특성이 바뀜을 시사하고 있다.

춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가 (An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam)

  • 이성희;심현주;이은택;홍순조;최성모
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.493-501
    • /
    • 2007
  • 최근, 국내에서는 물량절감과 경제성 확보를 목적으로 변단면 부재의 적용이 활발히 이루어지고 있으나 재료비선형을 이용한 설계방법으로는 취성파괴의 문제점에 대한 명확한 해결책을 제시하지 못하고 있으며, 변단면 부재의 초기변형, 폭두께비, 웨브 스티프너, 횡지지 거리등에 관한 연구가 부족한 실정이다. 따라서 본 연구에서는 기존에 연구된 이론식과 재료 및 기하 비선형 해석으로 신뢰성이 입증된 범용 유한요소 해석 프로그램인 ANSYS 9.0을 이용하여 춤이 큰 변단면 H형 보의 해석 모델을 완성하고 실험결과를 바탕으로 판-폭두께비와 비지지거리를 주요변수로 좌굴 및 극한내력을 평가하여, 웨브의 판폭두께비가 클 경우 좌굴내력이 감소하며, 횡 비지지 거리를 짧게 할 경우 연성능력을 향상시킬수 있음을 확인 하였다.

깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발 (Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame)

  • 정시화;알미아이유 로벨 원디므;박만우;주영규
    • 대한건축학회논문집:구조계
    • /
    • 제35권4호
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Inconel 625 열용사 코팅 층의 고상입자 침식 거동 (Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers)

  • 박일초;한민수
    • 해양환경안전학회지
    • /
    • 제27권4호
    • /
    • pp.521-528
    • /
    • 2021
  • 본 연구는 손상된 선박용 절탄기 핀튜브에 대하여 보수를 목적으로 Inconel 625 아크 열용사 코팅기술 적용 후 실링처리를 실시하였다. 모재(Substrate), 열용사 코팅(Thermal Srpay Coating; TSC) 그리고 열용사 코팅+실링처리(TSC+Sealing) 시편에 대하여 내구성을 평가하기 위해 ASTM G76-05에 의거하여 고상입자 침식(Solid Particle Erosion; SPE) 실험을 실시하였다. 표면 손상 형상은 주사전자현미경과 3D 레이져 현미경을 통해 관찰했으며, 무게 감소량과 표면 거칠기 분석을 실시하여 내구성을 평가하였다. 그 결과 내구성은 TSC와 TSC+Sealing에 비해 Substrate가 우수하게 나타났으며, 이는 TSC 층 내에 존재하는 다수의 기공 결함에 기인한 것으로 판단된다. 또한 고상입자 침식 손상 메카니즘은 Substrate의 경우 연성 재질 특성인 소성변형과 피로에 의한 균열 생성이 동반되었으며, TSC와 TSC+Sealing의 경우 취성파괴 경향이 확인되었다.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권4호
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.