• Title/Summary/Keyword: Brittle behavior

Search Result 530, Processing Time 0.022 seconds

Hysteretic Behavior of Composite Beam with Web Opening (웨브 개구부를 가진 합성보의 이력거동)

  • 박노웅
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.173-179
    • /
    • 1998
  • This research investigates the hysteretic behavior of composite beams with web opening near the beam end. The objective of this research is to intend a ductile failure around the web opening subjected to cyclic loading prior to the potential brittle failure at the beam-to-colum connection. Experimental tests of two specimens having different location of opening were conducted resulting in better performance of strength and ductility at the specimen of middle opening compared with that of upper opening. Also, comparisons of experimental and theoretical results were carried out.

  • PDF

Effect on Material Property on the Frature Propagation Behavior (재료의 취성과 연성이 균열의 진전에 미치는 영향)

  • Jeong, Jaeyeon;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.919-926
    • /
    • 2014
  • In this paper, the effect of material properties on fracture behavior was studied using cohesive zone model and extended finite element method. The rectangular tensile specimen with a central inclined initial crack was modeled by plane stress elements. In the CZM modeling, cohesive elements were inserted between every bulk elements in the predicted crack propagation region before analysis, while in the XFEM the enrichment to the elements was added as needed during analysis. The crack propagation behavior was examined for brittle and ductile materials. For thin specimen configuration, wrinkle deformation was accounted for by geometrically nonlinear post-buckling analysis and the effect of wrinkling on the crack propagation was investigated.

A Study on the Axial Crushing Behavior of Aluminum Cm Circular Members for light-weight (경량화용 Al/CFRP원형 부재의 축 압궤거동에 관한 연구)

  • Lee, Kil-Sung;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2005
  • Aluminum member absorbs energy by stable plastic deformation under axial loading. While CFRP(Carbon Fiber Reinforced Plastics) member absorbs energy by unstable brittle failure but its specific strength and stiffness is higher than those of aluminum member. In this study, for complement of detects and synergy effect by combination with the advantages of each member, the axial collapse tests were performed for aluminum CFRP members which are composed of aluminum members wrapped with CFRP outside aluminum circular members. Based on the respective collapse characteristics of aluminum and CFRP members, crushing behavior and energy absorption characteristics were analyzed for aluminum CRRP members which have different CFRP fiber orientation angle and thickness Test results showed that aluminum CFRP members supplemented the unstable brittle failure of CFRP members due to ductile nature of inner aluminum members. It turned out that the CFRP fiber orientation angle and thickness influence energy absorption capability together with the collapse mode of the members.

Study on Fracture Behavior of Mild Steel Under Cryogenic Condition (연강(Mild Steel)의 극저온 파괴 거동에 대한 실험적 연구)

  • Choi, Sung Woong;Lee, Woo IL
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.62-66
    • /
    • 2015
  • Considering for plants and structure under extreme conditions is required for the successful design, especially temperature and pressure. The ductile-brittle transition temperature (DBTT) for the materials under extreme condition needs to be considered. In this study, A-grade mild steel for the LNG carrier and offshore plant was examined by performing low-temperature Charpy V-notch (CVN) impact tests to investigate DBTT and the fracture toughness. The absorbed energy decreased gradually with the experimental temperature, which showed an upper-shelf energy region, lower shelf energy region, and transition temperature indicating DBTT. In addition, the fracture surface morphologies of the mild steels indicated ductile fractures at the upper-shelf energy level, with wide and large-sized dimples, whereas a brittle fracture surface, where was observed at the lower-shelf energy level, with both large and small cleavage facets. Based on the experimental results, ductile brittle transition temperature was estimated in about $-60^{\circ}C$.

Evaluation and Modification of Tensile Properties of Carbon Fiber Reinforced Polymer(CFRP) as Brittle Material with Probability Distribution (확률분포를 이용한 취성재료 특성의 탄소섬유보강폴리머 인장물성평가 및 보정)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • Carbon Fiber Reinforced Polymers(CFRP) has widely utilized as a material for rehabilitation because of its light-weight, deformability and workability. Because CFRP is brittle material whereas steel is ductile, it is inappropriate to apply conventional design approach for steel reinforcement. For ductile material, the behavior of combined elements is on average of that of unit element due to the stress redistribution between elements after yielding. Therefore, the mean value of the stress of combined elements is equal to that of unit element and the standard variation is smaller. Therefore, although the design value can increase, it is used as constant value because it is conservative and practical approach. However, for brittle material, the behavior of combined elements is governed by the weaker element because no stress redistribution is expected. Therefore, both the mean value and standard variation of the stress of combined elements decreases. For this reason, the design value would decrease as the number of element increases although it is eventually converged. In this paper, in brittle material, it is verified that the combination of unit element with normal distribution results in combined element with weibull distribution, so the modifying equation of mechanical properties is proposed with respect to the area load applied.

A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete (하이브리드섬유보강 고강도콘크리트의 피로거동에 관한 연구)

  • Kim, Nam-Wook;Choi, Go-Bong;Kim, Han-Sang;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.127-135
    • /
    • 2005
  • Recently, as the concrete structures are becoming bigger, higher, longer and more special, high strength concrete is demanded. But the fracture behavior of high strength concrete is shown more brittle than that of the normal strength concrete. Therefore, in order to improve the brittle fracture behavior and crack propagation resistance, ACI Committee363 has been recommend the use of fiber reinforced concrete which showed superior property against the crack propagation resistance. On the other hand, bridges, concrete pavements and railroads etc. have been exposed to the repetition loading at least several million times during the service life. Therefore, fatigue load is dominantly most of all, but it is very difficult to estimate the suitable fatigue strength calculated by fatigue load. In this research, in order to examine the fatigue behavior of hybrid fiber reinforced high strength concrete, the static and fatigue tests were carried out. And from these results, it was estimated the fatigue strength of hybrid fiber reinforced high strength concrete.

Numerical Analysis of Reinforce Concrete Structures Using Axial Deformation Link Elements (축방향 변형 요소를 이용한 RC 부재의 해석적 연구)

  • 신승교;허우영;임윤묵;김문겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.475-478
    • /
    • 1999
  • A numerical tool for predicting the behavior of reinforced concrete structures under uniaxial loads is proposed. Concrete is considered as quasi-brittle material, and for a reinforcing bar, an elastic-perfectly plastic constitutive relationship is adopted. In this study, the behavior of reinforced concrete according to the interface properties between the concrete and steel is analyzed. Comparisons between the numerical predictions and the experimental results show good agreements in the load-deflection behaviors and ultimate loads of reinforced concrete structures.

  • PDF

The Mechanical Properties of Alkali Resistance Glass Fiber Reinforced Cement under Different Curing Conditions

  • Jeong, Moon-Young;Song, Jong-Taek
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.189-192
    • /
    • 1998
  • The mechanical properties of alkali resistance (AR) glass fiber reinforced cement(GFRC) under different curing conditions were investigated in this study. The specimens were formed by extrusion process, and then steam cured and autoclaved. An autoclaved specimen showed the elastic-brittle behavior up to 4% of fiber volume fraction. However, it was found that the fracture behavior for cured specimen was changed to the elastic-plastic with crack branches fracture at greater than 3 vol.% of fiber.

  • PDF

A Study on the technique of impact analysis against concrete target using Lagrangian and Smoothed Particle Hydrodynamics (라그란지안 기법과 입자완화동력학 기법을 이용한 콘크리트 표적 충돌해석 기법 연구)

  • 하동호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.207-216
    • /
    • 2002
  • In this paper, the study on the behavior of the deformation of brittle material, such as concrete, ceramic, was peformed by comparison of Lagrangian technique and Smoothed Particle Hydrodynamics using commercial nonlinear hydrodynamic numerical program, Autodyn_2D. The effect of SPH technique was proved by investigating the behavior of material deformation, velocity profile and pressure profile.