• Title/Summary/Keyword: Brillouin zone

Search Result 13, Processing Time 0.026 seconds

Properties of Zero Group Velocity in 2-dimensional Photonic Crystal (2차원 광결정 군속도의 특징)

  • Kim, Gyeong-Rae;Lee, Myoung-Rae;Shin, Won-Jin;Kim, Chang-Kyo;Hong, Chin-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.137-142
    • /
    • 2010
  • A plane wave expansion method (PWEM) was applied for photonic band structure calculation. We examined zero group velocity modes in photonic crystal. The zero group velocity modes were obtained at the second band along F-K direction. We expanded higher order Brillouin zone (BZ) to find the locations of zero group velocity modes and to investicate their properties. We found twelve locations, inside the first Brillouin zone, where the group velocities became zero. Also, we calculated band structure and group velocity in off-plane configuration.

Properties of zero group velocity in 2-Dimensional photonic crystal (2 차원 광결정의 군속도의 특징)

  • Kim, Kyoung-Rae;Hong, Chin-Soo;Lee, Myoung-Rae;Shin, Won-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.52-54
    • /
    • 2009
  • A plane wave expansion method(PWEM) was applied for photonic band structure calculation. We examined zero group velocity modes in photonic crystals. The zero group velocity was obtained in second band along G-K direction. We expanded Brillouin zone, and investigated on zero group velocity.

  • PDF

Spin Polarization of CuD Nanowires

  • Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2006
  • Very recently, it was presented that the one dimensional (1D) CuO atomic chains can maintain large magnetic moments. In this work, we analyzed m-resolved density of states (DOS) to understand the peculiar spin polarization occurred in Cu atoms. It was found that the $\mid{m}\mid=1$ states play an essential role in the spin polarization of Cu atoms. In addition, we calculated magnetic anisotropy energy (MAE) and observed that the distribution of MAE is strongly sensitive to the interatomic distance between Cu and O atoms. Besides, it was revealed that the contribution to MAE comes for the second half of Brillouin zone (BZ).

NEUTRON THREE-AXIS SPECTROMETRY AT THE ADVENT OF 21ST CENTURY

  • Kulda Jiri
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.433-436
    • /
    • 2006
  • The implementation of multiplexing techniques combined with advances in neutron optics make the neutron three-axis spectrometers (TAS) an efficient tool to map inelastic response from single crystals over momentum transfer ranges comparable to the size of a single Brillouin zone. Thanks to recent progress in polarization techniques such experiments can be combined relatively easily with neutron polarization analysis, which does not only provide unambiguous separation of response corresponding to structural and magnetic degrees of freedom, but permits a quantitative analysis of the magnetic response anisotropy, often of crucial importance to test theoretical predictions. In the forthcoming decade we therefore expect a further development of the complementary use, rather than competition, of the reactor-based TAS's with time-of-flight (TOF) instruments for single crystal spectroscopy at the existing (ISIS) as well as at the newly built (SNS, J-PARK) pulsed sources.

Impact ionization for GaAs using full band monte carlo simulation (Full 밴드 몬테칼로 시뮬레이션을 이용한 GaAs 임팩트이온화에 관한 연구)

  • 정학기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.112-119
    • /
    • 1996
  • Impact ionization model in GaAs has been presented by modified keldysh formula with two sets of power exponent of 7.8 and 5.6 in study. Impact ionization rate is derived from fermil's golden rule and ful lenergy band stucture based on empirical pseudopotential method. Impact ionization rates show anisotropic property in low energy region (<3eV), but isotropic in high energy region (3>eV). Full band monte calo simulator is coded for investigating the validity of the GaAs impact ionization model, and validity is checked by comparing impact ionization coefficients with experimental values and ones in anisotropic model. Valley transitions to energy alteration are explained by investigating electron motion in brillouin zone for full band model to electric field variation.

  • PDF

Microscopic study of ferroelectric $PbTiO_3$ for the Non-volatile memory (비휘발성 메모리 응용을 위한 강유전성 $PbTiO_3$의 미시적 연구)

  • 김동현;박철홍;윤기완
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.341-344
    • /
    • 2001
  • We investigate the electronic structure of perovskite PbTiO$_3$ and the microscopic origin of the ferroelectric lattice instability through first-principles pseudopotential calculations. We examine pseudo Jahn-Teller effect to discuss the lattice instability. The JT effect is caused by the hybridization of the p-orbitals of O atoms and d-orbital of Ti atom. We find the JT effect is most significant at Brillouin zone renter.

  • PDF

Longitudinal vibration of double nanorod systems using doublet mechanics theory

  • Aydogdu, Metin;Gul, Ufuk
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.37-52
    • /
    • 2020
  • This paper investigates the free and forced longitudinal vibration of a double nanorod system using doublet mechanics theory. The doublet mechanics theory is a multiscale theory spanning between lattice dynamics and continuum mechanics. Equations of motion and boundary conditions for the double nanorod system are obtained using Hamilton's principle. Clamped-clamped and clamped-free boundary conditions are considered. Frequencies and dynamic displacements are determined to demonstrate the effects of length scale parameter of considered material and geometry of the nanorods. It is shown that frequencies obtained by the doublet mechanics theory are bounded from above (van Hove singularity) and unlike classical elasticity theory doublet mechanics theory predicts finite number of modes depending on the length of the nanotube. The present doublet mechanics results have been compared to molecular dynamics, experimental and nonlocal theory results and good agreement is observed between the present and other mentioned results. The difference between wave frequencies of graphite is less than 10% between doublet mechanics and experimental results near to the end of the first Brillouin zone.

Highly-Dispersive Guided Modes of Two-Dimensional Photonic Crystal Waveguides

  • Kim, Guk-Hyun;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.38-41
    • /
    • 2003
  • We present an analysis of highly-dispersive guided modes of two-dimensional photonic crystal waveguides. By the plane ave expansion method, band structures and mode profiles of two-dimensional photonic crystal waveguides are obtained. It is found that guided modes have very small group velocities and very large group velocity dispersions in the region near the f-point and in the region near the Brillouin zone edge. Especially, the group velocity dispersions are found to be millions of times larger than that of a conventional optical fiber. The contributions of the transverse resonance formed by two photonic band gap reflectors and the standing wave mode formed by periodic structures are discussed. We conclude that the highly-dispersive characteristics originate from the resonator-like aspect of the photonic crystal waveguide.

Electronic Structure of Oxygen in the Defective Nickel Monoxide

  • Lee, Gwang Sun;Gu, Hyeon Ju;Ham, Gyeong Hui;An, Un Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 1995
  • The band structure of nickel monoxide having a cation defect rock salt structure is calculated by means of the tight-binding extended Huckel method. The calculation is also made for the net charge, the DOS, the COOP, the electron density of the constituent atoms, and the O 1s binding energy shift when one of the adjacent nickel atoms is defected. It is found that the band gap near the Γ direction on the Brillouin zone is about 0.2 eV, and that all of the properties calculated including the electronic structure of the oxygen atom are more effectively affected by the surface defect than the inside one. The core O 1s binding energy shift is calculated by the use of valence potential method and the results are very satisfactory in comparison with the XPS experimental findings.

Anaysis of electron transport characteristics using full band impact ionization model on GaAs - field direction dependent analysis - (풀밴드 임팩트이온화모델을 이용한 GaAs 전자전송특성 분석 - 전계방향에 따른 분석 -)

  • 정학기;이종인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.915-922
    • /
    • 1999
  • The field dependent characteristics of electron transport with GaAs impact ionization have been analyzed, using GaAa full band E-k relationship. The E-k relationship is derived from empirical pseudopotential method, using Fermi's golden rule and local form factor, and Brillouin zone is divided into tetrahedrons for calculating impact ionization rate, and tetrahedron method, in which integrates each tetrahedrons, is used. Monte Carlo simulation is used for analyzing anisotropy of impact ionization. A result of transient analysis for impact ionization has presented that anisotropy of impact ionization only arises during transient state and impact ionization is isotropic under steady state. Anisotropic characteristics of impact ionization for GaAs, which is presented in this paper, can be used in carrying out a transient analysis for GaAs devices.

  • PDF