DOI QR코드

DOI QR Code

Properties of Zero Group Velocity in 2-dimensional Photonic Crystal

2차원 광결정 군속도의 특징

  • 김경래 (순천향대학교 전자물리학과) ;
  • 이명래 (순천향대학교 전자물리학과) ;
  • 신원진 (순천향대학교 전자물리학과) ;
  • 김창교 (순천향대학교 전자정보공학과) ;
  • 홍진수 (순천향대학교 전자물리학과)
  • Published : 2010.02.01

Abstract

A plane wave expansion method (PWEM) was applied for photonic band structure calculation. We examined zero group velocity modes in photonic crystal. The zero group velocity modes were obtained at the second band along F-K direction. We expanded higher order Brillouin zone (BZ) to find the locations of zero group velocity modes and to investicate their properties. We found twelve locations, inside the first Brillouin zone, where the group velocities became zero. Also, we calculated band structure and group velocity in off-plane configuration.

Keywords

References

  1. 이기라, 문준혁, 양승만, News & Information For Chemical Engineers, Vol. 23, No. 4, p. 446, 2005.
  2. K. Sakoda, "Optical Properties of Photonic crystal", Springer, 2001.
  3. M. Ghebrebrhan, M. Ibanescu, Steven G. Johnson, M. Soljacic, and J. D. Joannopoulos, “Distinguishing zero-group-velocity modes in photonic crystals”, Phys. Rev. A, Vol. 76, p. 063810, 2007. https://doi.org/10.1103/PhysRevA.76.063810
  4. H.-Y. Ryu and M. Notomi, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab”, Phys. Rev. B, Vol. 68, p. 045209, 2003. https://doi.org/10.1103/PhysRevB.68.045209
  5. K. Sakoda and K. Ohtaka, “Sum-frequency generation in a two-dimensional photonic lattice”, Phys. Rev. B, Vol. 54, p. 5742, 1996. https://doi.org/10.1103/PhysRevB.54.5742
  6. S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, and Y.-H. Lee, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs”, Appl. Phys. Lett., Vol. 83, No. 19, p. 3870, 2003. https://doi.org/10.1063/1.1626004
  7. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from freestanding triangular photonic crystal slabs”, Appl. Phys. Lett., Vol. 80, p. 3476, 2002. https://doi.org/10.1063/1.1477617
  8. H. T. Zhang, D. S. Wang, M. L. Gong, and D. Z. Zhao, “Application of group theory to plane wave expansion method for photonic crystals”, Optics Communications, Vol. 237, p. 179, 2004. https://doi.org/10.1016/j.optcom.2004.03.075
  9. S. Xiao, L. Shena, and S. He, “A planewave expansion method based on the effective medium theory for calculating the band structure of a two-dimensional photonic crystal”, Phys. Lett. A, Vol. 313, p. 132, 2003. https://doi.org/10.1016/S0375-9601(03)00690-X
  10. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices”, Phys. Rev. B, Vol. 52, No. 11, p. 7982, 1995. https://doi.org/10.1103/PhysRevB.52.7982
  11. H.-Y. Ryu, J.-K. Hwang, and Y.-H. Lee, “Effect of size nonuniformities on the band gap of two-dimensional photonic crystals”, Phys. Rev. B, Vol. 59, No. 8, p. 5463, 1999. https://doi.org/10.1103/PhysRevB.59.5463
  12. X.-P. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal”, Quantum Electronics, IEEE Journal of In Quantum Electronics, Vol. 32, No. 3, p. 535, 1996. https://doi.org/10.1109/3.485407