• 제목/요약/키워드: Bridged anions

검색결과 4건 처리시간 0.021초

Self-assembly Coordination Compounds of Cu(II), Zn(II) and Ag(I) with btp Ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine):Counteranion Effects

  • Kim, Cheal;Kim, Sung-Jin;Kim, Young-Mee
    • 한국결정학회지
    • /
    • 제16권2호
    • /
    • pp.107-127
    • /
    • 2005
  • Five Cu(II) compounds were obtained from different copper salts with btp ligands, and their structures were determined by X-ray crystallography. The structure of coordination polymer 2 contains btp-bridged tetranuclear Cu(II) units weakly connected by nitrate ions, and the structure of a discrete Cu(II) molecule 1 contains acetates and btp ligands. With perchlorate anions, two btp ligands bridge Cu(II) ions to form a double zigzag chain 3, while a single zigzag chain 4 is created with sulfate anions. The reaction of $Cu(NO_{3})_{2}$ containing $NH_{4}PF_{6}$ with btp ligands also produced a polymeric compound 5 containing $Cu(H_{2}O)_{2}^{2+}$ and $Cu(NO_{3})_{2}$ units alternatively bridged by btp ligands with H-bonds between copper bonded water and nitrate oxygen atoms. Five Zn(II) compounds were obtained from different zinc salts with btp ligands, and the structures of polymeric compounds (6, 7 and 8) and monomeric compounds (9 and 10) were determined by X-ray crystallography. With nitrate, chloride and bromide anions, btp ligands bridge Zn(II) ions to form polymeric compounds (6, 7 and 8), but btp ligands coordinate to a Zn(II) ion to form monomeric complexes (9 and 10) with $PF_{6}^{-}$ and perchlorate anions. Four silver salts and btp ligands produced two kinds of structures, dinuclear 20-membered rings and one-dimensional zigzag chain depending on different anions. For $ClO_{4}^{-}$ and OTf anions, weak interactions between Ag(I) and anions make dinuclear 20-membered rings construct polymeric compounds (11 and 13). For $PF_{6}^{-}$ anion, there are also weak interactions between Ag(I) and $F(PF_{6}^{-})(12)$, but they do not construct a polymeric compound. For $O_{2}CCF_{3}^{-}$ anion, btp ligands bridge Ag(I) atoms to make one-dimensional zigzag chain (14), and there are also interactions between Ag(I) and anions.

Coordination Polymers Consisting of Unusual Motifs. Synthesis and Properties of Silver(I) and Copper(II) Complexes of Triethanolaminetriisonicotinate

  • Noh, Tae-Hwan;Lee, Jung-Woon;Lee, Young-A;Lee, Ji-Eun;Lee, Shim-Sung;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.562-566
    • /
    • 2008
  • Reaction of AgNO3 with triethanolaminetriisonicotinate (L) produces 1 D coordination polymer of [Ag3(L)2](NO3)3 and the same treatment of Cu(NO3)2 with L gives 1D coordination polymer of [Cu(L)2](NO3)2. The nonrigid triethanolaminetriisonicotinate acts as a m 3-bridged tridentate for [Ag3(L)2](NO3)3 and a m 2-bridged bidentate for [Cu(L)2](NO3)2 to produce unusual motifs. The NO3- anions can be smoothly exchanged by PF6- anions in an aqueous suspension without destruction of the skeletal structure.

Anions as Connectors for Higher Dimensions. Silver(I) Trifuoracetate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine

  • Kim, Yun-Ju;Yoo, Kyung-Ho;Park, Ki-Min;Hong, Jong-Ki;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1744-1748
    • /
    • 2002
  • Trifluoroacetate anion as a connector has been studied on $AgCF_3CO_2$ with 3,3'-$Py_2X$(X=O vs S) produces 1 : 1 adducts of [Ag($CF_3CO_2$)(3,3'-$Py_2X<$)]. Crystallographic characterization of [Ag($CF_3CO_2$)(3,3'-$Py_2X$)](monoclinic $P2_1$a=7.383(1)$\AA$b=19.801(3)$\AA$c=9.297(3)$\AA$,$\beta$=$100.26(2)^{\circ}$,V=1337.4(5) $\AA^3$, Z=2, R=0.0386) reveals that the 3,3'-$Py_2O$ spacer connects two silver ions to give a single strand and that the single strands are linked via the trifluoroacetate anions in an "up and down even-bridge" to give an elegant molecular grid. The framework of [$Ag(CF_3CO_2)(3,3'-Py_2X)$](monoclinic $P2_1/c$a=8.331(2)$\AA$b=14.010(2)$\AA$,c=11.926(3 $\AA$$\beta$=$93.70(2)^{\circ}$=1385.1(6)$\AA^3$, Z=4, R=0.0589) is a single-strand. The single strands are connected via the trifluoroacetate anions in a double-bridge, resulting in a typical molecular chicken-wire. The trifluoroacetate anion as a connector appears to be primarily associated with its moderately coordinating ability. Their structural features have been discussed based on the anion exchangeability. Thermal analyses indicate that the compounds are stable up to approximately $200^{\circ}C$.

Structural characterization of ladder-type cadmium(II) citrate complex, (C3H12N2)[{Cd(H2O)(C6H5O7)}2]·6H2O

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • 분석과학
    • /
    • 제20권4호
    • /
    • pp.355-360
    • /
    • 2007
  • The title complex, $(C_3H_{12}N_2)[\{Cd(H_2O)(C_6H_5O_7)\}_2]{\cdot}6H_2O$, I, has been prepared and its structure characterized by FT-IR, EDS, elemental analysis, ICP-AES, and X-ray single crystallography. It is triclinic system, $P{\bar{1}}$ space group with a = 10.236(2), b = 11.318(2), c = $13.198(2){\AA}$, ${\alpha}=77.95(1)^{\circ}$, ${\beta}=68.10(1)^{\circ}$, ${\gamma}=78.12(1)^{\circ}$, V = $1373.5(3){\AA}^3$, Z = 2. Complex I has constituted by protonated 1,3-diaminopropane cations, citrate coordinated cadmium(II) anions, and free water molecules. The central cadmium atoms have a capped trigonal prism geometry by seven coordination with six oxygen atoms of three different citrate ligands and one water molecule. Citrate ligands are bridged to three different cadmium atoms. Each cadmium atom is linked by carboxylate and hydroxyl groups of citrate ligand to construct an one-dimensional ladder-type assembly structure. The polymeric crystal structure is stabilized by three-dimensional networks of the intermolecular O-H${\cdots}$O and N-H${\cdots}$O hydrogen-bonding interaction.