• Title/Summary/Keyword: Bridge light

Search Result 242, Processing Time 0.026 seconds

Numerical Study of Lightweight FRP Bridge Deck System induced by Thermal Stress by Fire (화재 발생시 열응력에 의한 복합재료 과량 시스템의 거동에 관한 연구)

  • Jung Woo-Young;Lee Hyung-Kil;Park Hui-Kwang;Shim In-Seob;Song Young-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.928-931
    • /
    • 2006
  • Due to their light weight, high stiffness-to-weight and strength-to-weight ratios, and potentially high resistance to environmental degradation, resulting in lower life-cycle costs, polymer composites, are increasingly being considered for use in civil infrastructure applications. Recently, an FRP deck has been installed on a state highway, located in New York State. In this study, a thermal stress analysis was conducted using finite element method to study failure mechanisms of the superstructure. This analysis evaluated small and large temperature gradient effects on the FRP deck considering lightweight of FRP deck and ply orientations at the interface between steel girders and FRP deck Finite element model was verified using the load tests of the bridge deck. Finally, the analytical results shows the possible failure mechanism of FRP deck under various temperature changes and its corresponding index is suddenly varied depending on the rapid change of temperature on the deck plate.

  • PDF

Strengthening of Continuous Composite Grid-girder Bridges by Using the Post-tensioning (후긴장을 이용한 연속 합성 격자형교의 보강 방법에 관한 연구)

  • Back, Dong Hoon;Lee, Woo Hyun;Kim, Ki Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.441-455
    • /
    • 1997
  • The need for rehabilitation of the existing bridges is a growing concern in many countries and has been emphasized in various research reports and publications. Many bridges constructed between 1960s and 1970s in Korea were designed for relatively light traffic volumes, speeds and the weight, thus they are inadequate for the present traffic conditions. This together with some design deficiencies, has resulted in deficiencies of various degrees of many bridges. One strengthening method which has significant advantages is the application of external post-tensioning tendons. This paper presents an example of three span continuous composite bridge strenghtened by application of external post-tensioning.

  • PDF

A New Phase Shift Full Bridge Converter with Serially Connected Two Transformers (직렬 연결된 두 개의 트랜스포머를 갖는 새로운 위상 천이 풀 브릿지 컨버터)

  • 구관본;김태성;문건우;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.443-452
    • /
    • 2002
  • A new phase shift full bridge (PSFB) converter with serially connected two transformers for telecommunication equipments of several hundred watts is proposed. The main features of the proposed converter are a wide input voltage range, an easiness to meet the requirement for zero voltage switching (ZVS) condition at a light load, and a small output voltage ripple. Furthermore, the serially connected two transformers can replace both a main transformer and an output inductor since the two transformers act as not only a main transformer but an output inductor by turns. Therefore, there is no need to use an output inductor, then the proposed converter features high power density. A mode analysis, design equations through a large signal modeling, and experimental results are presented to verify the validity of the proposed converter.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

Design of Precast Circular Piers with Prestressing Bars (강봉으로 긴장한 프리캐스트 원형교각의 설계)

  • Shim, Chang-Su;Chung, Chul-Hun;Yoon, Jae-Young;Kim, Cheol-Hwan;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.121-124
    • /
    • 2008
  • Fast construction of bridge substructures is a new trend of bridge design. A precast pier system with bonded prestressing bars was proposed. In this paper, quasi-static tests on precast prestressed piers were conducted to evaluate the seismic behavior of the precast piers with bonded prestressing bars. In order to strengthen the shear strength of the joints between column segments, steel tubes filled with mortar were used. Displacement ductility and energy dissipation capacity of the precast piers were evaluated. The suggested precast pier system showed better seismic performance than the required ductility. Based on the research results, an example bridge pier for light-railway lines was designed and design considerations were discussed.

  • PDF

Development of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 데크를 이용한 아치가교 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Glass-fiber reinforced polyester (GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood due to light weight and high durability of GFRP composite material. If a temporary arch bridge is built by GFRP composite deck, rapid construction of the bridge and reuse of the GFRP composite deck are possible. In this paper, we develop a type of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several possible types of temporary arch bridges are suggested and verified by finite element analysis.

The Origin and Transmission of the Bridge-Treading Festival of Yeoju (여주답교(驪州踏橋)놀이의 유래(由來)와 전승양상(傳承樣相))

  • Lee, Dong-Yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.33
    • /
    • pp.308-336
    • /
    • 2000
  • Bridge - Treading was a flok festival that was held on the night of the 1st full moon of the lunar new years. Men and women, both young and old, took pan in it in the belief that crossing a bridge, or bridges, back and forth, the same number of times as the number of years they were old, on this night would prevent all types of leg and foot ailments from occurring throughout the coming year. The practice was carried on mainly around the Seoul central region of Korea. Though it has now largely disappeared, it has been reatores in the Yeoju area. According to the Korean almanac and other chronicles, it was once practiced throughout the land. It is in the preserved was brige-treading festival of yeoju, however, that both the original form, transmission, and function are clarified and brought to light. In this regard, when compares to similar festivals of other region such as Songpa and Kwacheon, it is found that of Yeojo has a special characteristic. Accompanied by folksongs, music, and dance, this was not a religions festival in the strict sense, but rather an annual custom filled with mirth and merriment that formed an integral part of Korean folk culture.

Real-time comprehensive image processing system for detecting concrete bridges crack

  • Lin, Weiguo;Sun, Yichao;Yang, Qiaoning;Lin, Yaru
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.445-457
    • /
    • 2019
  • Cracks are an important distress of concrete bridges, and may reduce the life and safety of bridges. However, the traditional manual crack detection means highly depend on the experience of inspectors. Furthermore, it is time-consuming, expensive, and often unsafe when inaccessible position of bridge is to be assessed, such as viaduct pier. To solve this question, the real-time automatic crack detecting system with unmanned aerial vehicle (UAV) become a choice. This paper designs a new automatic detection system based on real-time comprehensive image processing for bridge crack. It has small size, light weight, low power consumption and can be carried on a small UAV for real-time data acquisition and processing. The real-time comprehensive image processing algorithm used in this detection system combines the advantage of connected domain area, shape extremum, morphology and support vector data description (SVDD). The performance and validity of the proposed algorithm and system are verified. Compared with other detection method, the proposed system can effectively detect cracks with high detection accuracy and high speed. The designed system in this paper is suitable for practical engineering applications.

Series Resonant Full Bridge Inverter for Battery-fed Microwave Oven (배터리 구동 전자레인지를 위한 직렬 공진형 풀브릿지 인버터)

  • 鄭 龍 采;韓 盛 軫
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.165-170
    • /
    • 2002
  • In order to solve the problem of system efficiency reduced on account of two stage power conversion, we propose a series resonant full bridge Inverter circuit for battery-fed microwave oven. This circuit has both a compact size and a light weight comparing with the conventional HVT(High Voltage Transformer) method. Also, it may be adjusted power levels of the microwave oven by a frequency control. In this paper, operational principles are explained in detail in order to understand the circuit operation. Also, a proto-type Inverter circuit with 1[kW] Power consumption is built and tested for verifying the operation.

A Design of Driving Circuit for Microwave oven using Phase-shifted FB-ZVS PWM Switching (Phase-shifted FB-ZVS PWM 스위칭을 이용한 Micorwave oven 구동회로 설계)

  • 이완윤;정교범;신판석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.265-272
    • /
    • 2001
  • The traditional 60[Hz] power supply for during magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60[Hz] High Voltage Transformer(HVT), capacitor and th phase control of thyristors. To alleviate these disadvantages, this paper proposes a 20[kHz] phase-shifted Full-Bridge(FB) Zero-Voltage-Switched(ZVS) PWM converter for driving a 600[W] magnetron in an 1[kW] microwave oven. The proposed converter has advantages of light weight and high power density.

  • PDF