• Title/Summary/Keyword: Bridge height

Search Result 269, Processing Time 0.022 seconds

The Effects of a Bridging Exercise Applying Changes in the Base of Support for the Shoulders on Trunk Muscle Activation

  • Lee, Tae-Gyu;Park, Chan-Hyun;Son, Ho-Hee
    • 대한물리의학회지
    • /
    • 제11권3호
    • /
    • pp.97-104
    • /
    • 2016
  • PURPOSE: Bridge exercise is widely used in rehabilitation exercise for trunk stabilization through various applications in clinical practice. However, there is a lack of studies changing the base of support for the shoulders. The purpose of this study is to investigate the changes in the base of support for the shoulders of trunk muscle activation during bridge exercise. METHODS: 20 healthy subjects (10 men, 10 women) in their twenties were participated in this study. They performed 5 bridge exercises (bridge exercise with their shoulders on a stable table (1/2 knee height, knee height), and on a sling (1/2 knee height, knee height), conventional bridge exercise. The surface electromyography were used for rectus abdominis (RA), internal oblique (IO), external oblique (EO), and erector spinae (ES). RESULTS: During bridge exercise that their shoulders on the sling of 1/2 knee height, the RA, EO, IO muscle activities were significant increased. And during bridge exercise that their shoulders on the stable surface of knee height, the IO/RA ratio were higher than other positions but there were no significant difference between positions for EO/RA, IO/RA ratio. CONCLUSION: Based on this result, using various bases of support and changing the height of bridging exercise may be used to provide effective trunk stabilization exercises.

철도교량형식의 경간에 따른 형고 비교 (Comparison of Girder Height by Span in Various Types of Railway Bridge)

  • 이태규;김혜욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.262-267
    • /
    • 2008
  • The type used mainly in present our country in the superstructure of the railway bridge including the high speed railway is classified by the box girder and the I-type girder, greatly. The box girder is mainly used by the high speed railway bridge, and the I-type girder is used mostly by general railway bridge style. In this study, according to current railway bridge design code, we execute design by the span length of each considered bridge form. Also we analyze the suitable girder height by the span length and calculate the construction costs. The comparative analysis of the structural efficiency is produced by the span length. From this study, it is exposed that the girder height by the span length is the biggest in box girder. Also it is evaluated that the construction costs of the box girder is higher than that of the I-type girder although there is a difference between more or less according to adopted construction method.

  • PDF

Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges

  • Zhang, Xin-jun;Yao, Mei
    • Wind and Structures
    • /
    • 제21권4호
    • /
    • pp.407-424
    • /
    • 2015
  • To explore the favorable structural system of cable-stayed bridges with ultra-kilometer main span, based on a fully self-anchored cable-stayed bridge with 1400 m main span, a partially earth-anchored cable-stayed bridge scheme with the same main span is designed. Numerical investigation on the dynamic characteristics, aerostatic and aerodynamic stability of both two bridge schemes is conducted, and the results are compared to those of a suspension bridge with similar main span, and considering from the aspect of wind stability, the feasibility of using partially earth-anchored cable-stayed bridge in super long-span bridges with ultra-kilometer main span is discussed. Moreover, the effects of structural design parameters including the length of earth-anchored girder, the number of auxiliary piers in side span, the height and width of girder, the tower height etc on the dynamic characteristics, aerostatic and aerodynamic stability of a partially earth-anchored cable-stayed bridge are analyzed, and their reasonable values are proposed. The results show that as compared to fully self-anchored cable-stayed bridge and suspension bridge with similar main span, the partially earth-anchored cable-stayed bridge has greater structural stiffness and better aerostatic and aerodynamic stability, and consequently becomes a favorable structural system for super long-span bridges with ultra-kilometer main span. The partially earth-anchored cable-stayed bridge can achieve greater stiffness and better wind stability under the cases of increasing the earth-anchored girder length, increasing the height and width of girder, setting several auxiliary piers in side span and increasing the tower height.

사물인터넷과 클라우드 기반의 실시간 교량 높이 계측 서비스 연구 (A Study on IoT and Cloud-based Real-time Bridge Height Measurement Service)

  • 최차환;천영만;정승훈;차득기;이영재
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.145-157
    • /
    • 2017
  • 현재 부산항대교 아래를 통과할 수 있는 선박의 높이는 60m 이하로 제한되어 있어, 60m 이상의 대형 선박은 부산항 국제여객터미널을 이용하지 못하고 있다. 이에 본 연구에서는 60m 이상의 대형 선박의 안전한 교량 통과를 위하여 해수면 변화에 의한 교량 높이 변화를 지속적으로 측정하고, 이를 실시간으로 제공하는 서비스를 개발하였다. 고정밀 레이저거리측정기, GPS 센서, 광모듈, 댐핑구조물로 구성된 계측시스템을 통하여 해수면 변화에 따른 교량 높이 변화를 측정하고, 측정된 정보는 클라우드 기반의 모바일 앱을 통하여 실시간 제공된다. 또한 통항 지원 및 높이제한 변경을 위한 객관적 교량 높이 자료를 확보하기 위하여 관측데이터를 분석하고 예측모형을 도출하였다. 결과적으로 이번 연구의 결과는 부산항대교의 통항높이 규칙을 60미터에서 63미터로 개정하는데 객관적인 근거자료가 되었다.

변단면 하로판형교의 계획 및 설계 (The Plan & Design for Through Plate Girder Bridge of Variable Section)

  • 민영택;김성렬;고승영;김영상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.530-537
    • /
    • 2006
  • Recently, the railroad route plan is trying to minimize the damage of the local resident which is caused by railroad construction. For this reason, reducing the banking height of soil roadbed, lowering the bridge girder height of a solid intersection and a part of cross river, the through bridge type which can achieve a required span length must apply. The representative through bridges of railroad are arch bridges, truss bridges and plate girder bridges, the through plate girder bridge of variable section can apply that the span length of these bridges is about $30{\sim}50m$, namely, middle span length bridge types, and that can satisfy structural capacity and beauty of railroad at the same time. This paper introduces plan and design process of the Su-eo cheon bridge applied by a through plate girder bridge type of the Jinju-Gwangyang double track 6th construction ordered at Korea Rail network Authority in 2005.

  • PDF

FDS code를 이용한 교량하부창고 화재발생원 영향분석 (Investigation of the Fire Source in the Warehouse under Bridge using FDS Code)

  • 지광습;이승정;신연호;심재원;김지환
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.663-673
    • /
    • 2011
  • 본 연구에서는 FDS code를 이용하여 교량하부창고 화재발생원과 교량높이의 영향을 분석하였다. 헵탄을 이용한 단위가연물의 연소실험, 실물모형 연소실험 결과와 FDS code를 이용한 해석결과의 비교를 통하여 FDS code의 유효성을 검증하였다. 이를 이용하여 교량하부 표준창고구조물의 실제 화재시나리오를 적용하여 교량높이 및 창고내부 가연물에 따른 콘크리트의 폭렬, 강도손실, 보강철근의 강도손실로 나누어 교량의 화재안전성을 평가하였다. 연구결과, 대부분의 교량이 하부창고화재에 대해 폭렬에 취약한 것을 확인할 수 있었다. 화재강도는 도서류가 가장 강하며 30m 높이 교량에 콘크리트의 강도저하, 폭렬 및 보강철근 강도저하를 가장 크게 발생시킬 것으로 예측되었으며, 고무류 창고화재의 경우 30m 이상 높이의 교량에 대해 화재안전성을 확보할 수 있었다.

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

강박스거더교의 응력분배 거동에 관한 실측연구 (An Experimental Study on the Stress Distribution in Steel Box Girder Bridge)

  • 이성행;김경남;손영상;박태균;정경섭
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.9-20
    • /
    • 2008
  • 강박스거더교 다이아프램부에 있어서 경제적이고 합리적인 설계가 요망되어 진다. 본 연구에서는 시공중인 4경간 강박스거더교에서 콘크리트 상판 타설 시와 차량재하 시에 응력을 측정한다. 측정 결과는 지점부 다이아프램부와 중앙부에서 응력분배를 연구하기 위하여 분석된다. 다이아프램부 수직보강재의 높이별 응력과 이와 같은 높이의 다이아프램부 응력을 정리하고, 이들 결과를 분석하여 적정 수직보강재 길이의 효율성을 판단한다. 또한 다이아프램부 3조의 수직보강재 각각의 응력을 분석하고, 콘크리트 경화 후 차량 재하 시와 시에 따른 응력비를 산출하여 다이아프램부 설계합리화 연구의 기본 자료로 수립하고자 한다.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

Aerodynamic parameters selection and windbreak mechanism of wind barrier for high-speed railway bridge

  • Yujing Wang;Weiwei Guo;He Xia;Qinghai Guan;Shaoqin Wang
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.411-425
    • /
    • 2024
  • To investigate the optimal aerodynamic parameters of wind barriers for the T-beam of high-speed railway (HSR) bridge and the wind field of the wind barrier-train-bridge system, the three-component forces of the system and the wind pressure on the vehicle surface were tested and analyzed through the sectional model wind test. The effects of wind velocity, with/without wind barrier, the height of wind barrier, and the air permeability of the wind barrier on the aerodynamic characteristics of the train-bridge system are discussed. Additionally, a CFD numerical model is constructed to evaluate the wind environment of the bridge surface with/without the wind barrier, and the impact of wind barrier on the running safety of vehicles are analyzed. Comprehensively considering the running safety of the train and the wind-resistant stability of the bridge, it is more appropriate to set the wind barrier height H as 3.5 m and the porosity 𝛽 as 30% respectively.