• Title/Summary/Keyword: Bridge foundation

Search Result 313, Processing Time 0.034 seconds

Experimental Investigation on the Compression Behavior of Concrete Filled Circular FRP Tubes (콘크리트 충전 FRP 원통관의 압축거동에 관한 실험적 연구)

  • Joo, Hyung-Joong;Lee, Seung-Sik;Kim, Young-Ho;Park, Jong-Hwa;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • Durability problems may arise in the concrete, which is one of the major construction materials, used in the construction field. Bridge piers and foundation piles are usually made with concrete and they are exposed to the moisture and hence the durability of the concrete reduced significantly due to oxidization of re-bar and icing of concrete. To mitigate such problems, FRP tube has been developed and the concrete filled FRP tube (CFFT) has been investigated to find the confinement effect which is provided additionally. It was reported that if the concrete is wrapped with FRP, strength and chemical resistance are improved significantly. In order to apply such a member in the construction field, structural behavior and applicable design guideline or design criteria must be thoroughly investigated. In the experimental investigation, the results are compared with the previous research results and the relationship which can predict the ultimate strength and strain is suggested. In addition, some comments found at the compression tests are given briefly.

Experimental Evaluation of Reserve Capacities for Connection Details between Steel Pipe Pile and Concrete Footing of Type-B (Type-B방식의 강관말뚝과 확대기초 연결부 상세에 따른 보유내력의 실험적 평가)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kwon, Yong-Kil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.183-192
    • /
    • 2008
  • Generally, application of steel pipe pile as deep foundation member needs special requirement for the connection method between steel pipe pile and concrete footing. Even though two types of connection method are suggested in the korea highway bridge code, type-B method is prevalent. In this study, vertical, lateral, and tension loading test are done for two types of type B connection to review stress concentration, formation and behavior of imaginary RC column in the footing. Welding type and hook type as the connection method are considered in this study. Test results show that welding type have the more reserve capacity than hook type and the specimens connected by the welding type behave as the imaginary RC column in the footing. However, the specimens connected by the hook type did not behave as the imaginary RC column in the footing but behave as the hinge.

Estimation of resistance coefficient of PHC bored pile by Load Test II (재하시험에 의한 PHC 매입말뚝의 저항계수 산정 II)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • In Europe and the United States, the use of limit states design has almost been established for pile foundation design. According to the global trend, the Ministry of Land, Transport and Maritime Affairs has established the basic design criteria of the bridge under the limit state design method. However, it is difficult to reflect on the design right now because of lack of research on resistance coefficient of the pile method and ground condition. In this study, to obtain the resistance coefficient of PHC bored pile which is widely used in Korea, the bearing capacity calculated by the LH design standard and the bridge design standard method, the static load test(21 times) and the dynamic load test(EOID 21 times, Restrike 21) The reliability analysis was performed on the results. The analysis of the resistance coefficient of PHC bored pile by loading test was analyzed by adding more than two times data. As a result, the resistance coefficient obtained from the static load test(ultimate bearing capacity) was 0.64 ~ 0.83 according to the design formula and the target reliability index, and the resistance coefficient obtained from the dynamic load test(ultimate bearing capacity) was 0.42~0.55. Respectively. The resistance coefficient obtained from the modified bearing capacity of dynamic load test(EOID's ultimate end bearing capacity + restrike's ultimate skin bearing capacity) was 0.55~0.71, which was reduced to about 14% when compared with the resistance coefficient obtained by the static load test(ultimate bearing capacity). As a result of the addition of the data, the resistivity coefficient was not changed significantly, even if the data were increased more than 2 times by the same value or 0.04 as the previous resistance coefficient. In conclusion, the overall resistance coefficient calculated by the static load test and dynamic load tests in this study is larger than the resistance coefficient of 0.3 suggested by the bridge design standard(2015).

Bearing Capacity Analyses of Shallow Foundations in Reinforced Slopes

  • Kim, Hong-Taek;Choi, In-Sik;Sim, Young-Jong
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.127-148
    • /
    • 1996
  • Recently, foundations of heavy structures such as bridge abutments have been built on slopes or near the crest of slopes at an increasing rate. Because the bearing capacity of such foundations is considerably lower than the bearing capacity of the same soil on a level ground, deep footings such as piles and caissons are often used. However, the costs of such methods are generally very high. One of the new techniques to overcome the problem is to place reinforcing members such as geosynthetics or metal strips horizontally at some depths beneath the footings. Rational methods of analysis to predict the bearing capacity of footings in reinforced slopes are therefore needed. This paper proposes an analytical method for estimating the increase in bearing capacity gained from the included horizontal strips or ties of tensile reinforcing in the foundation soil below the footing built near the crest of a slope. A failure mechanism, including the concept of'wide slab effect', adopted in the present study for analyzing the bearing capacity of foundations in reinforced slopes, is established through the observed model test behaviors described by Binquet SE Lee and Huang et al, and the Boussinesq solutions. The analytical results are then compared with the experimental data described in the paper by Huang et al. Also in order to properly evaluate the soil reinforcement interaction, typical pullout test values of the apparent friction coefficient, which usually vary with depths owing to both the increase of the shearing volume and the increase in local stress caused by soil dilatancy, are analyzed and related functionally. Furthermore, analytical parametric studies are carried out to investigate the effect and significance of various pertinent parameters associated with design of reinforced slope foundations. Keywords : Bearing capacity, Reinforced slope, Slab effect, Friction coefficient.

  • PDF

Small-Scaled Laboratory Experiments for Dynamic Stability Monitoring of Large Circular Steel Pipe Cofferdam of Marine Bridge Foundation (해상교량기초용 대형원형강관 가물막이의 동적 안정성 모니터링을 위한 실내모형실험)

  • Park, Min-Chul;Lee, Jong-Sub;Kim, Dongho;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.123-134
    • /
    • 2019
  • This study presents dynamic responses of circular pipe models as a part of fundamental studies on dynamic stability monitoring of the large circular steel pipe cofferdam with the ship collision. Small-scaled laboratory experiments are performed with a single and bolted circular steel pipes with a diameter, thickness, and height of 30, 0.4, 90 cm, respectively. The bolted circular steel pipe is configured with three segments of 30 cm in height. Circular steel pipe models are embedded in a soil tank, all 1 m in length, width, and height. The thickness of soil in the soil tank is set at 23 cm. The ship collision is simulated with a hammer impacting. The dynamic responses are investigated with different water levels of 25, 40, 55, and 70 cm. Experimental results show that a signal energy decreases with increasing water level. More sensitive reduction in the energy appears for the bolted circular steel pipe. A predominant frequency decreases with increasing water level for both single and bolted steel pipes. The minor reduction in the frequency appears for the bolted circular steel pipe under the water level of 70 cm. This study suggests that the signal energy and frequency response is useful for the dynamic stability monitoring of the large circular steel pipe cofferdam.

A Development Direction of Infrastructure Based Disaster Mitigation & Management Integrated System (SOC 시설물 재난대응 및 관리시스템 개발방향)

  • Park, Suyeul;Oh, Eunho;Choi, Bonghyuck;Kim, Jinman
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.134-142
    • /
    • 2016
  • Main infrastructures, such as levee, dam, bridge, road, etc., are very important due to not only the means of support for social and industrial activities in normal situation but also the means of protection of life and property during disaster occurrence. In spite of this importance of infrastructures, however, any disaster management systems that actively use these infrastructures are not developed yet. Moreover, infrastructures are not usually included in emergency action plans, thus it occurs second and third impact on communities and industries due to collapsing or damage of infrastructures. Therefore, the authors in this paper analyzed previous research, SWOT, STEEP, and patents and technical journals and conducted a technology need survey ni order to understand the trend of disaster management system as well as suggest main research fields and detail research items. The results of this paper will be a foundation of developing an advanced infrastructure integrated system of maintenance and disaster mitigation and contribute our nation to have an active response system by using infrastructure.

An Experimental Study on Properties of Concrete Using Latent Heat Binder (잠열성 결합재를 활용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kim, Do-Su;Khil, Bae-Su;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.661-668
    • /
    • 2008
  • It is necessary to develop a new technology for effectively reducing hydration heat and controlling thermal cracking caused increasing construction of large size massive concrete structures such as mat foundation of high-rise building, grandiose bridge, and LNG tank. Therefor, to develop a new technology for reducing hydration heat of large size massive concrete in this study, after developing the latent heat binder for controling hydration heat of concrete by application of latent heat material, it was investigated basic properties and durability such as slump, air content and compressive strength, shrinkage properties, permeability, freezing and thawing resistance, corrosion, and hydration heat generation properties of concrete using latent heat binder. As a test result, it was confirmed that latent heat binder was not affected adversely the basic property and durability of concrete, and was advanced on the reduction of hydration heat and control of thermal crack. It is expected to be applied as the excellent technology on the management of hydration heat and thermal crack in large size mass concrete structures.

Eco-corridor Positioning for Target Species - By Field Surveying of Mammals' Road-Kill - (목표종 생태통로의 위치선정 -포유류 Road-kill 현장조사를 중심으로-)

  • Lee, Yong-Wook;Lee, Myeong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2006
  • The purpose of this research presents a method to position and makes the structure for eco-corridors reasonably with collectable analysing results of various effects shown in mammals' road-kill at 429 points. Target animals of this research are Leopard cat, Siberian weasel, Raccoon dog, Korean hare, Eurasian red squirrel, Siberian chipmunk and Water deer. The results derived from the empirical analysis on the contents above are followed. First, according to the results as for Leopard cat road kill analysis, which is designated as Endangered Species Class II, the eco-corridor might be located at near village having stead food in order to decrease the frequencies of road-kill, because its road kill points were mainly collected at 4 lane hilly road with mountain-road-farm area geological type of. Second, because Siberian weasel's road kill was detected at 2 lane hilly road with mountain-road-stream geological type, the eco-corridor might be located at near a mill to decrease road-kill frequencies. Third, the road-kill frequency of Eurasian red squirrel can be reduced when the eco-corridor is located at the area across coniferous tree near 4 lane west sea freeway with mountain-road-mountain. Fourth, the road-kill of Raccoon dog can be reduced when the eco-corridor is located at 4 lane mountain road or hilly road with the geological type having farm land-road-mountain(stream). Fifth, Korean hare's road-kill can be reduced when the eco-corridor is located at grass land across ridge line of mountain, because wild rabbit road kill was happened at 4 lane mountain road or 2 lane mountain road(mountain-road-mountain). Sixth, As for Siberian chipmunk, the eco-corridor might be located at the side slope of mountain road at 2 lane mountain road under the speed of 60km/h with mountain-road-mountain. Seventh, For Water deer, the eco-corridor might be located at 4 lane hilly road with mountain-road-farm land. As for Common otter, Amur hedgehog, Yellow-throated marten, Weasel, it is difficult to specify the proper site of eco-corridor due to the lack of data. Eco-corridors for carnivores might be well located at 4 lane hilly road or 2 lane hilly road with mountain-road-farm land, and the track for herbivores might be well located as a overhead bridge on mountain-road-mountain type across mountains. In order to position eco-corridors for wildlife properly, we have to research animal's behavior with ecological background, and to consider the local uniqueness and regularly collect the empirical road-kill data in long term 3 to 5 year, which can be the foundation for the more suitable place of wild life eco-corridors.

Tunnelling in Bangkok - Two Case Studies (방콕의 터널공사 - 두 개의 사례연구)

  • Teparaksa, Wanchai;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.153-163
    • /
    • 2005
  • This paper presents two case studies for tunnelling in Bangkok: a subway tunnel site and a flood diversion tunnel site. The first case study is related to ground displacement response for dual tunnel Bangkok MRT subway. The MRT subway project of Bangkok city consists of dual tunnels about 20 km long with 18 subway stations. The tunnels are seated in the firm first stiff silty clay layer between 15-22 m in depth below ground surface. The behavior of ground deformation response based on instrumentation is presented. The back analysis based on plain strain FEM analysis is also presented and agrees with field performance. The shear strain of FEM analysis is in the range of 0.1-1% and in accordance with the results of self boring pressuremeter tests. Meanwhile, the second case study is related to the EPB tunnelling bored underneath through underground obstruction. The Premprachakorn flood diversion tunnel is the shortcut tunnel to divert the flood water in rainy season into the Choapraya river. The tunnel was bored by means of EPB shield tunnelling in very stiff silty clay layer at about 20-24 m in depth. During flood diversion tunnel bored underneath the existing Bangkok main water supply tunnel and pile foundation of the bridge, instrumentation was monitored and compared with predicted FEM analysis. The prevention risk potential by means of predicting damage assessment is also presented and discussed.

  • PDF

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF