• Title/Summary/Keyword: Bridge dynamics behavior

Search Result 29, Processing Time 0.024 seconds

Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test (고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The aim of this paper is to verify the dynamics stability of the continuous PSC Box bridges on the high-speed Kyoung-bu railway when a high-sped train runs through it. An experimental study was carried out to investigate the dynamic behaviors of the PSC Box railway bridge, which had ben designed based on dynamic design criteria. As a result, it was determined that PSC Box railway bridges possess enough dynamics stability for use by high-speed trains. According to the result of a field test (dynamics measuring analysis) that was conducted, an application of the natural frequency of train speed and the adjustment of the bridge's span length will allow one to come up with a more economical and suitable bridge design. Furthermore, it was found that the continuous control of the bridge's dynamic behavior and the bridge's maintena nce require the recording of data. The results of this study are very important in evaluating the structural stability of high-speed line bridges.

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

Dynamic Response of 3-D Cable-Stayed Bridge Considering the Sway Vibrational Effect of Stays (케이블 횡진동을 고려한 3차원 사장교의 동적거동)

  • 성익현
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.36-45
    • /
    • 1999
  • The basic idea of cable-stayed girder bridges is the utilization of high strength cables to provide intermediate supports for the bridge girder so that the girder can span a much longer distance. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Techniques required for the static analysis of cable-stayed bridges has been developed by many researchers. However, little work has been done on the dynamic analysis of such structures. To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads. two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF

Vibrational Characteristics on the Cables in Cable Stayed Bridge (사장교 케이블의 진동거동 특성)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • Recently, a cable disconnection accident occurred due to a lightning strike at the Seohae Bridge located in Dangjin-Pyeongtaek City. This is a natural occurrence, but it is a recall that it is very important to review the safety issues due to the disconnection of cable bridges. In other words, the role of cables in cable bridges has a profound effect on the safety of the structure, and it has become necessary to grasp the effect on the entire structural system. The cable bridge is an economic bridge that builds the main tower and supports the bottom plate by cable. The influence of the cable is the main member, which is a big influence on the safety of the whole bridge system. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part II: earthquake acting along the bridge axis

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.39-54
    • /
    • 2010
  • In this paper, a simple approach is presented for studying the dynamic response of multi-span steel bridges supported by pylons of different heights, subjected to earthquake motions acting along the axis of the bridge with spatial variations. The analysis is carried out using the modal analysis technique, while the solution of the integral-differential equations derived is obtained using the successive approximations technique. It was found that the height of piers and the quality of the foundation soil can affect significantly the dynamical behavior of the bridges studied. Illustrative examples are presented to highlight the points of concern and useful conclusions are gathered.

A Study on the Optimal Span Length Selection of Conventional Railway Bridges considering Resonance Suppression (공진소멸 현상을 이용한 기존선 철도교량의 지간 최적화를 위한 연구)

  • Kim Sungil;Chung Wonseok;Choi Eunsoo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • The possibility of resonance exists always in railway bridges unlike highway bridges because railway bridges are loaded repeatedly by specific trains which has equidistant wheel loads. Resonance phenomenon of the bridge can be broken out when exciting frequencies by tram determined from the speed and effective beating internal coincides with natural frequencies of the bridge Excessive fluctuations of dynamic displacements and accelerations by resonance cause unpleasant passenger comfort and instability of railway structures. On the other hand, resonance suppression phenomenon that all the previous loads which pass through the bridge sum to zero can be occurred. In case we apply this resonance suppression properly, design of stable railway bridge from dynamics point of view can be made. In the present study, most dominant beating internal of conventional trams will be find. A(ter that. specific span length of the bridge which derives resonance suppression can be selected for railway bridges which accomplishes superior dynamic behavior.

Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge

  • Mei, D.P.
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The dynamic performance of railway bridges under high-speed trains draws the attention of bridge engineers. The vibration issue for long-span bridges under high-speed trains is still not well understood due to lack of validations through structural health monitoring (SHM) data. This paper investigates the correlation between bridge acceleration and train speed based on structural dynamics theory and SHM system from three foci. Firstly, the calculated formula of acceleration response under a series of moving load is deduced for the situation that train length is near the length of the bridge span, the correlation between train speed and acceleration amplitude is analyzed. Secondly, the correlation scatterplots of the speed-acceleration is presented and discussed based on the transverse and vertical acceleration response data of Dashengguan Yangtze River Bridge SHM system. Thirdly, the warning indexes of the bridge performance for correlation scatterplots of speed-acceleration are established. The main conclusions are: (1) The resonance between trains and the bridge is unlikely to happen for long-span bridge, but a multimodal correlation curve between train speed and acceleration amplitude exists after the resonance speed; (2) Based on SHM data, multimodal correlation scatterplots of speed-acceleration exist and they have similar trends with the calculated formula; (3) An envelope line of polylines can be used as early warning indicators of the changes of bridge performance due to the changes of slope of envelope line and peak speed of amplitude. This work also gives several suggestions which lay a foundation for the better design, maintenance and long-term monitoring of a long-span high-speed bridge.

Quasimolecular Dynamics Simulation for Bending Fracture Propagation of Laminar Composite Material (적층복합재료의 굽힘 파괴거동에 관한 준분자동력학적 해석)

  • 박준영;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.59-62
    • /
    • 1997
  • Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristic of actual size material. In quasimolecular dynamics, which is an attempt to bridge the gab between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to simulate the large scale material behavior. In this paper, a numerical simulation using quasimolecular dynamics has been performed to investigate the laminar composite material fracture and crack propagation behaviors in bending process of laminar composite material which is made of fictitious materials. The simulation of the bending of laminar composite material has clarified the effects of strength of material at outer surface upon the fracture behviors of the specimen.

  • PDF

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).