• 제목/요약/키워드: Bridge Mode

검색결과 641건 처리시간 0.022초

V2G 응용을 위한 능동클램프 회로를 가진 양방향 하이브리드 스위칭 풀브리지 컨버터 (A Bidirectional Hybrid Switching Full-Bridge Converter with Active Clamp Circuit for V2G Applications)

  • 도안반투안;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.335-336
    • /
    • 2016
  • This paper introduces a bidirectional full-bridge converter with new active damp structure. The proposed active damp circuit can damp the oscillating voltage across the rectifier diodes with a smaller voltage stress of the damping capacitor and eliminate the circulating current. In addition, the proposed converter can achieve additional advantages such as nearly ZCS switching for leading-leg switches and no recovery current for rectifier-bridge by the suitable design of the damp capacitor to resonate with leakage inductor. Since the ZVS is achieved for both leading-leg and lagging-leg switches by the magnetizing current of the transformer, it can be achieved regardless of the load variation. A 3.3 kW prototype converter is implemented for vehicle-to-grid (V2G) application and the advantages of the proposed converter are verified by the experiments. The maximum efficiencies of 98.2% and 97.6% have been achieved for the buck mode and boost mode operation, respectively.

  • PDF

Dynamic analysis of train-bridge system under one-way and two-way high-speed train passing

  • Jahangiri, Meysam;Zakeri, Jabar-Ali
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.33-44
    • /
    • 2017
  • In this paper, the dynamic responses of train-bridge system under one-way and two-way high-speed train passing are studied. The 3D finite element modeling is used and the bridge and train are modeled considering their details. The created model is validated by the results of the dynamic field test. To study the effect of train speed, different train passing scenarios are analyzed, including one-way passing, two-way passing in different directions at same speeds, and two-way passing in different directions at different speeds. The results show that the locations of maximum acceleration are different in one-way and two-way passing modes, and the maximum values in two-way passing mode are higher than those in one-way passing mode, while the maximum accelerations in both modes are almost identical. The displacement and acceleration values in different scenarios show peaks at speeds of 260 and 120 km/h, due to the proximity of the natural frequencies of the bridge and loading frequencies of the train at these speeds.

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

승강압용 양방향 DC-DC컨버터 설계 및 제어 (Bi-directional DC-DC Converter Design and Control for step-up/step-down)

  • 원충연;장수진;이태원;이병국;김수석
    • 조명전기설비학회논문지
    • /
    • 제20권5호
    • /
    • pp.49-56
    • /
    • 2006
  • 양방향 컨버터는 연료전지 발전 시스템의 인버터 dc link와 저전압 배터리를 연결시켜 준다. 방전 모드(boost)에서는 저전압(battery: 48[V])측에서 고전압(dc link: 380[V])측으로, 충전 모드(buck)에서는 저전압측 배터리로 전력이 전달된다. 본 논문에서는 방전모드 시 MOSFET으로 구성된 1.5[kW] 능동 클램프 전류원 풀 브리지 컨버터가 동작하고 배터리 충전 시 IGBT로 구성된 전압원 하프 브리지 컨버터가 동작한다.

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Advanced flutter simulation of flexible bridge decks

  • Szabo, Gergely;Gyorgyi, Jozsef;Kristof, Gergely
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.133-154
    • /
    • 2012
  • In this paper a bridge flutter prediction is performed by using advanced numerical simulation. Two novel approaches were developed simultaneously by utilizing the ANSYS v12.1 commercial software package. The first one is a fluid-structure interaction simulation involving the three-dimensional elastic motion of a bridge deck and the fluid flow around it. The second one is an updated forced oscillation technique based on the dynamic mode shapes of the bridge. An aeroelastic wind tunnel model was constructed in order to validate the numerical results. Good agreement between the numerical results and the measurements proves the applicability of the novel methods in bridge flutter assessment.

Experimental studies on possible vortex shedding in a suspension bridge - Part I - Structural dynamic characteristics and analysis model

  • Law, S.S.;Yang, Q.S.;Fang, Y.L.
    • Wind and Structures
    • /
    • 제10권6호
    • /
    • pp.543-554
    • /
    • 2007
  • The suspension bridge is situated in an area of complex topography with both open sea and overland turbulence characteristics, and it is subject to frequent typhoon occurrences. This paper investigates experimentally the possible vortex shedding events of the structure under high wind and typhoon conditions. A single-degree-of-freedom model for the vibration of a unit bridge deck section is adopted to determine the amplitude of vibration and to estimate the parameters related to the lifting force in a vortex shedding event. The results of the studies are presented in a companion paper (Law, et al. 2007). In this paper, statistical analysis on the measured responses of the bridge deck shows that the vibration response at the first torsional mode of the structure has a significant increase at and beyond the critical wind speed for vortex shedding as noted in the wind tunnel tests on a section model of the structure.

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.