• 제목/요약/키워드: Brick element

검색결과 93건 처리시간 0.028초

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

Study on failure mechanism of line contact structures of nuclear graphite

  • Jia, Shigang;Yi, Yanan;Wang, Lu;Liu, Guangyan;Ma, Qinwei;Sun, Libin;Shi, Li;Ma, Shaopeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2989-2998
    • /
    • 2022
  • Line contact structures, such as the contact between graphite brick and graphite tenon, widely exist in high-temperature gas-cooled reactors. Due to the stress concentration effect, the line contact area is one of the dangerous positions prone to failure in the nuclear reactor core. In this paper, the failure mechanism of line contact structures composed of IG11 nuclear graphite column and brick were investigated by means of experiment and finite element simulation. It was found that the failure process mainly includes three stages: firstly, the damage accumulation in nuclear graphite material led to the characteristic yielding of the line contact structure, but no macroscopic failure can be observed at this stage; secondly, the stresses near the contact area met Mohr failure criterion, and a crack initiated and propagated laterally in the contact zone, that is, local macroscopic failure occurred at this stage; finally, a second crack initiated in the contact area and developed in to a Y-shape, resulting in the final failure of the structure. This study lays a foundation for the structural design and safety assessment of high-temperature gas-cooled reactors.

Investigation on the masonry vault by experimental and numerical approaches

  • Guner, Yunus;Ozturk, Duygu;Ercan, Emre;Nuhoglu, Ayhan
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.13-21
    • /
    • 2022
  • Masonry constructions exhibit uncertain behaviors under dynamic effects such as seismic action. Complex issues arise in the idealization of structural systems of buildings having different material types and mechanical properties. In this study, the structural behavior of a vaulted masonry building constructed using full clay brick and lime-based mortar and sitting on consecutive arches was investigated by experimental and numerical approaches. The dimensions of the structure built in the laboratory were 391 × 196 cm, and its height was 234 cm. An incremental repetitive loading was applied to the prototype construction model. Along the gradually increasing loading pattern, the load-displacement curves of the masonry structure were obtained with the assistance of eight linear displacement transducers. In addition, crack formation areas, and relevant causes of its formation were determined. The experimental model was idealized using the finite element method, and numerical analyses were performed for the area considered as linear being under similar loading effect. From the linear analyses, the displacement values and stress distribution of the numerical model were obtained. In addition, the effects of tie members, frequently being used in the supports of curved load-bearing elements, on the structural behavior were examined. Consequently, the experimental and numerical analysis results were comparatively evaluated.

Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions

  • Shrestha, Kshitij C.;Araki, Yoshikazu;Nagae, Takuya;Omori, Toshihiro;Sutou, Yuji;Kainuma, Ryosuke;Ishida, Kiyohito
    • Earthquakes and Structures
    • /
    • 제2권3호
    • /
    • pp.233-256
    • /
    • 2011
  • This paper investigates the applicability of newly developed Cu-Al-Mn shape memory alloy (SMA) bars to retrofitting of historical masonry constructions by performing quasi-static tests of half-scale brick walls subjected to cyclic out-of-plane flexure. Problems associated with conventional steel reinforcing bars lie in pinching, or degradation of stiffness and strength under cyclic loading, and in their inability to restrain residual deformations in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu-Al-Mn SMA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Three types of brick wall specimens, unreinforced, steel reinforced, and SMA reinforced specimens are prepared. The specimens are subjected to quasi-static cyclic loading up to rotation angle enough to cause yielding of reinforcing bars. Corresponding nonlinear finite element models are developed to simulate the experimental observations. It was found from the experimental and numerical results that both the steel reinforced and SMA reinforced specimens showed substantial increment in strength and ductility as compared to the unreinforced specimen. The steel reinforced specimen showed pinching and significant residual elongation in reinforcing bars while the SMA reinforced specimen did not. Both the experimental and numerical observations demonstrate the superiority of Cu-Al-Mn SMA bars to conventional steel reinforcing bars in retrofitting historical masonry constructions.

대퇴부 거동 해석 및 복합재료 보철물 설계 (Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis)

  • 임종완;하성규
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권2호
    • /
    • pp.119-130
    • /
    • 2002
  • 무시멘트 인공 고관절 전치환술 후, 복합재료 스템을 갖는 대퇴골의 장기 거동과 인공 대퇴 보철물의 설계 성능을 분석하기 위하여 비선형 유한요소 프로그램이 개발되었다. 한 발로 서 있을 때의 관절 접촉 하중과 근육하중이 적용되었고, 816개의 brick요소를 갖는 타원형 단면의 복합재료 스템으로 치환된 대퇴골이 3차원 유한요소로 모델링 되었다. 프로그램을 사용하여 대퇴골의 밀도 변화, 응력분포, 상대미소운동이 plate cut과 bend mold와 같은 제작 방법에 대한 스템의 적층 각도 변경에 따라서 평가되었다. 결과는 코발트 크롭 합금, 티타늄 합금, 스테인레스 강과 같은 금속 재료보다 AS4/PEEK, T300/976과 같은 복합재료가 적은 골 흡수를 보였다. 대퇴골 보철물의 장기 안정성 증대는 적당한 복합재료의 적층과 적층 각도의 선택에 의하여 얻어질 수 있었다.

충격반향기법을 이용한 내화물 두께 추정 (Estimation of the thickness of refractory ceramics using the impact-echo method)

  • 이성민;신남호;노용래
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.247-253
    • /
    • 2017
  • 일반적으로 내화물의 진동특성은 등방성 재료로 가정한 후 확인한다. 하지만 실제로 내화물은 특정 방향으로 가압 성형하여 제조되기 때문에 이방성 재료특성을 보인다. 따라서 본 연구에서는 내화물을 정방정계 대칭성으로 가정하고, 유한요소프로그램을 이용해 너비, 길이, 높이 방향에 대한 주파수 응답을 얻었다. 해석결과의 타당성은 실제 측정결과의 비교를 통해 검증하였다. 주파수 응답을 기반으로, 충격방향기법을 이용하여 내화벽돌의 세 방향의 두께를 추정하였다. 실험을 통해 찾은 두께와 실제 두께와의 최대 오차율은 5 % 미만으로 확인되었다. 이를 통해 내화물과 같은 이방성 재료 두께 측정 시 충격반향기법의 효용성을 확인하였다.

사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계 (Process and Die Design of Square Cup Drawing for Wall Thickening)

  • 김진호;홍석무
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5789-5794
    • /
    • 2015
  • 최근 스마트 폰, 모바일 PC 제품의 외관에 필요한 가벼운 금속제품으로 제조를 하기 위하여 알루미늄 압출 공정과 CNC 가공기법을 적용한 생산방식이 널리 사용되고 있다. 하지만, 알루미늄 압출법은 외관 디자인의 제약이 있으며, 특히 CNC 가공 프로세스가 상대적으로 높은 생산 비용 및 낮은 생산성으로 생산단가가 많이 높은 단점이 있다. 본 연구에서, 새로운 처리 방법을 순서 재료비를 대폭 감소시키고, 제조 속도를 향상시키기 위해 판재성형과 부피성형의 두가지 공정을 섞어 새로운 판단조 공정을 개발하였다. 새로운 판단조 공법(hybrid plate forging)이란 우선 일반적인 딥드로잉으로 중간 모양을 만든 후 원하는 벽 부위만 증육을 하는 방법을 의미한다. 이러한 판단조 공법을 활용하여 재료의 낭비와 제조 시간을 최소화하는 것이 가능하게 된다. 본 연구에서는 상용 유한 요소 프로그램 AFDEX-2D를 통해 판단조공정을 설계하였고 최적의 사용 가능한 소재의 두께와 초기 폭을 설계하였다. 최종적으로 실제 노트북 케이스 금형을 제작하여 제안한 방법의 타당성을 검증하였다.

Cable layout design of two way prestressed concrete slabs using FEM

  • Khan, Ahmad Ali;Pathak, K.K.;Dindorkar, N.
    • Computers and Concrete
    • /
    • 제11권1호
    • /
    • pp.75-91
    • /
    • 2013
  • In this paper, a new approach for cable layout design of pre-stressed concrete slabs is presented. To account the cable profile accurately, it is modelled by B-spline. Using the convex hull property of the B-spline, an efficient algorithm has been developed to obtain the cable layout for pre-stressed concrete slabs. For finite element computations, tendon and concrete are modelled by 3 noded bar and 20 noded brick elements respectively. The cable concrete interactions are precisely accounted using vector calculus formulae. Using the proposed technique a two way prestressed concrete slab has been successfully designed considering several design criteria.

실험 및 해석을 통한 노심지지 원통쉘의 자유진동해석 (Free Vibration Analysis of a Core Support Barrel by Experimental and Analysis Methods)

  • 김월태;정명조;송선호;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.217-222
    • /
    • 1997
  • Free vibration analysis of a Core Support Barrel shell structure is studied through experimental and finite element analysis methods. The structure is considered to be a thick shell with the ratio of thickness to radius 3/10. Finite element model is established by solid model with brick elements. Modal analyses are performed with respect to the various ratios of thickness to radius with clamped-free and free-free boundary conditions. Experimental test is done to find out how well the results are agreed with those of analysis. The comparison of the results from experiment and analysis shows a good agreement between them in general.

  • PDF

Experimental and numerical investigation of walls strengthened with fiber plaster

  • Basaran, Hakan;Demir, Ali;Bagci, Muhiddin;Ergun, Sefa
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.189-200
    • /
    • 2015
  • The topic of this study is to investigate behaviors of masonry walls strengthened with reinforced fiber plaster under diagonal tensile loads. Full blend brick $100{\times}50{\times}30mm$ in dimensions were used to make masonry walls with dimensions of $400{\times}400{\times}100mm$. Three different samples were manufactured by plastering masonry walls with traditional style, with 3% polypropylene or with 5% steel fiber. All the samples were tested using ASTM 1391-81 standards. The propagation of damage on samples caused by diagonal tensile load was observed and load-displacement graphs were plotted for each sample. A finite element software (ABAQUS) was used to obtain numerical values for all samples and crack patterns and load-displacement responses were obtained. Experimental and numerical results were compared.