• Title/Summary/Keyword: Breeding strain

Search Result 219, Processing Time 0.026 seconds

Breeding of WhangBoJama Sex-Limited Yellow Silk Silkworm Variety Suitable for Spring Rearing Season (춘잠기 강건 다수성 한성황견 누에품종 "황보잠" 육성)

  • Kim, Kee-Young;Sung, Gyoo-Byung;Kim, Mi-Ja;Ji, Sang-Duk;Kweon, HaeYong;Park, Kwang-Young;Shon, Bong-Hee;Kang, Pil-Don
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.1
    • /
    • pp.63-67
    • /
    • 2013
  • A new silkworm variety "WhangBoJam" for spring rearing season is F1 hybrid between Jam317, a japanese strain bred from introduction breeding and Jam318, a chinese strain from introduction breeding. In the local adaptability test performed at 8 local areas in spring of 2012, the hatchability rate of WhangBoJam was recorded 95% similar to Kum HwangJam. The larval period was 8hours more long than KumHwangJam. The pupation percentage was recorded 6.6% higher than KumHwangJam. Single cocoon weight was recorded 2.29 g similar to KumHwangJam and cocoon yield(21.3 kg) was higher than KumHwangJam. The concentration of DNJ was measured to 0.22% in WhangBoJam, lower than DaePoongJam(0.26%). In the Paecilomyces tenuipes production ability test, the pupal weight of Whang BoJam was 1.33 g/individual, higher than KumHwangJam (1.19 g/individual).

Involvement of Growth-Promoting Rhizobacterium Paenibacillus polymyxa in Root Rot of Stored Korean Ginseng

  • Jeon, Yong-Ho;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.881-891
    • /
    • 2003
  • Paenibacillus polymyxa is a plant growth-promoting rhizobacterium (PGPR) which can be used for biological control of plant diseases. Several bacterial strains were isolated from rotten roots of Korean ginseng (Panax ginseng C. A. Meyer) that were in storage. These strains were identified as P. polymyxa, based on a RAPD analysis using a P. polymyxa-specific primer, cultural and physiological characteristics, an analysis utilizing the Biolog system, gas chromatography of fatty acid methyl esters (GC-FAME), and the 16S rDNA sequence analysis. These strains were found to cause the rot in stored ginseng roots. Twenty-six P. polymyxa strains, including twenty GBR strains, were phylogenetically classified into two groups according to the ERIC and BOX-PCR analyses and 16S rDNA sequencing, and the resulting groupings systematized to the degrees of virulence of each strain in causing root rot. In particular, highly virulent GBR strains clustered together, and this group may be considered as subspecies or biovar. The virulence of the strains seemed to be related to their starch hydrolysis enzyme activity, but not their cellulase or hemicellulase activity, since strains with reduced or no starch-hydrolytic activity showed little or no virulence. Artificial inoculation of the highly virulent strain GBR-1 onto the root surfaces of Korean ginseng resulted in small brown lesions which were sunken and confined to the outer portion of the root. Ginseng root discs inoculated in vitro or two-year-old roots grown in soil drenched with the inoculum developed significant rot only when the inoculum density was $10^{6}-10^{7}$ or more colony-forming units (CFU) per ml. These results suggest that P. polymyxa might induce ginseng root rot if their population levels are high. Based on these results, it is recommended that the concentration of P. polymyxa should be monitored, when it is used as a biocontrol agent of ginseng, especially in the treatment of stored roots.

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong;Lim, Won-Seok;Kwon, Sang-Wook;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Breeding of Aspergillus oryzae for the Alkaline Pretense Overproducing Strain. (재조합 Alkaline Protease를 대량 생산하는 Aspergillus oryzae 균주개발)

  • 이병로;유기원;최원균;최동성;임한진;성창근
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.450-455
    • /
    • 1998
  • Aspergillus oryzae M-2-3 strain (argB$\^$-/) was transformed with pTAalp plasmid which was constructed for expression of the alkaline pretense gene, alpA, and 16 transformants were selected on arginine minus medium. When these transformants were tested for productivity of alkaline proteases using agar plate containing skim milk, the halo was observed around each colony of transformants, but not observed around the host strain in this condition. Southern analysis showed that the pTAalp plasmid having alpA gene was integrated into the chromosome of the host strain. The highest level of alkaline protease production was obtained in the culture filtrate of the transformant No. 14, which was estimated to 80-90% of total secreted proteins, and the enzyme activity was 64-450 times higher than those of host strain and industrial strain. Total nitrogen content and the digestion rate in soybean Koji extracts were also increased to 1.5 times in Aspergillus oryzae transformant No. 14.

  • PDF

Complete chromosome and plasmid sequences of Staphylococcus aureus strain JDFM SA01, isolated from a milk filter in Korean dairy farm

  • Ryu, Sangdon;Shin, Donghyun;Heo, Jaeyoung;Jeong, Seong-Yeop;Jeong, Do-Youn;Yun, Bohyun;Kang, Minkyoung;Kim, Younghoon;Oh, Sangnam
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.423-426
    • /
    • 2020
  • Staphylococcus aureus is a significant pathogen that can source a variety of illness worldwide. In this announcement, we report here the complete genome sequence of S. aureus strain JDFM SA01, isolated from a milk filter collected from Korean dairy farm. The final complete genome assembly consists of one circular chromosome (2,748,925 bp) with an overall GC content of 32.9% and one circular plasmid sequence (24,655bp) with a GC content of 28.7%.

Cultivar Resistance of Korean Breeding Cut-Rose against Crown Gall by Agrobacterium tumefaciens Evaluated by an In Vitro Inoculation

  • Serah Lim;Se Chul Chun;Jin-Won Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.220-227
    • /
    • 2023
  • Rose crown gall caused by Agrobacterium tumefaciens is a major disease that damages the production of cutroses in Korea. The effective prevention methods for this disease include the use of resistant varieties. This study was conducted to evaluate the resistance of 58 Korean cultivars and six foreign cultivars to crown gall disease with nodal explants in vitro. Among 180 A. tumefaciens strains, pathogenic strain RC12 was selected as an inoculant strain. The strain RC12 was identified based on characteristics of some selective media, pathogenicity test, and polymerase chain reaction analysis. Forty rose cultivars formed tumors on explants inoculated with A. tumefaciens RC12. However, 24 cultivars, including 22 Korean cultivars and 2 foreign cultivars, showed resistance to A. tumefaciens RC12 without forming any tumors. Six cultivars with tumor formation rates of over 30% formed initial tumors within 23 days after inoculation. Six cultivars with low tumor formation rates of around 5% formed initial tumors after 28 days of inoculation. It was found that gall formation rate was highly correlated with the initial gall formation period. Thus, the relationship between the period of gall formation and the rate of gall formation could be useful for assessing resistance to crown gall disease. In vitro inoculation methods could be used to evaluate resistance of cut-rose cultivars to crown gall diseases.

Identification of potential molecular markers for disease resistance in giant gourami through major histocompatibility complex (MHC) II gene analysis

  • Ikhsan Khasani;Rita Febrianti;Sularto;Wahyu Pamungkas;Keukeu Kaniawati Rosada
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • Research to obtain molecular markers related to the major histocompatibility complex (MHC) gene in both strains of gourami is essential to increase the success of the selection program of disease resistance traits. Using a completely randomized design (CRD), the challenge test consists of four treatments and seven replications. The treatment was Jambi gourami injected with PBS (KJ), Kalimantan gourami injected with PBS (KK), Jambi strain injected with Aeromonas hydrophila (GJ), and Kalimantan strain injected with A. hydrophila (GK). The GJ population was more resistant to A. hydrophila than the GK population. The MHC II gene was detected in both test strains (GJ and GK), both resistant and susceptible fish. However, there were differences in the results of amplifying the MHC II gene in susceptible and resistant fish. Two DNA fragments approximately 400 and 585 bp were detected in the genome of susceptible fish, while in the genome of susceptible fish, only one DNA fragment was detected (400 bp). Therefore, the MHC II gene fragment with a size of about 585 bp can be used as a potential candidate for specific molecular markers to obtain resistance to A. hydrophila bacteria in the giant gourami.

Molecular Breeding of Phenylalanine Producing E. coli Containing Temperature-Controllable Vector (온도조절형(溫度調節型) 발현(發現) Vector를 함유한 Phenylalanine 생산균(生産菌)의 분자육종(分子育種))

  • Shim, Sang-Kook;Lee, Young-Chun;Chung, Ho-Kwon;Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • In order to produce phenylalanine without tyrosine co-production, we constructed various temperature-controllable expression vectors by insertion of lower expression of the tyrA gene into the plasmid pSY130-14. And tyrosine revertant to cultivate without addition of tyrosine, was selected from Escherichia coli strain AT2471[tyrA , thi ] by spontaneous mutation. The strain AT2471 harbouring plasmid pSY146A and the tyrosine revertant 5 harbouring plasmid pSY111-14 produced 12 g/l and 15 g/l of phenylalanine respectively in a 2.5 l jar fermenter at a constant temperature of $39^{\circ}C$ after 55 hours cultivation.

  • PDF

Biological, Physical and Cytological Properties of Pepper mottle virus-SNU1 and Its RT-PCR Detection

  • Han, Jung-Heon;Choi, Hong-Soo;Kim, Dong-Hwan;Lee, Hung-Rul;Kim, Byung-Dong
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2006
  • A strain of Pepper mottle virus (PepMov) was isolated from chili pepper plants in Korea. In host range study, this virus, designated PepMoV-SNU1, shared most characteristics with PepMoV isolates reported previously. Thermal inactivation point ($45^{\circ}C\;to\;75^{\circ}C$) and dilution end point ($10^{-1}\;to\;10^{-4}$) of PepMoV-SNU1 showed differences depending on the propagation hosts. Cylindrical and pinwheel-shaped inclusions were always observed in pepper leaf tissues infected with the virus alone. Unexpectedly, a special structure of pinwheel shaped inclusion surrounded with unknown small spots was also observed in the leaf section when co-infected with a strain of pepper mild mottle virus. The partial sequence of coat protein gene and 3' untranslated region of PepMoV-SNU1 showed 98% identity with those of other PepMoV isolates. A primer pair derived from 3' end of the coat protein gene and poly A tail regions were designed. Optimal detection condition of PepMoV-SNU1 by RT-PCR was tested to determine appropriate annealing temperature and additional volumes of oligo-dT (18-mer), dNTP, and Taq polymerase. Under the optimized condition, an expected 500 Up PCR-product was detected in pepper leaves infected with PepMoV-SNU1 but not in healthy plants.

Differential Symbiotic Response of Phage-typed Strains of Bradyrhizobium japonicum with Soybean Cultivars

  • Appunu Chinnaswamy;Dhar Banshi
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.363-368
    • /
    • 2006
  • In this study, native Byadyrhizobium strains were isolated from the host plant, Glycine max, harvested from fields in Madhya Pradesh, India, and were typed by Iytic rhizobiophages. Eight indigenous (Soy2, ASR011, ASR031, ASR032, MSR091, ISR050, ISR076 and ISR078) and two exotic strains (USDA123 and CB1809), all of which evidenced a distinct reaction with six phages, were employed in this study. The symbiotic interaction of these strains was studied initially using soybean cultivar JS335 in a sand culture in a controlled environment, and the efficiency was assessed based on the nodule number, nodule dry weight, plant dry weight, nitrogenase activity, and total accumulation of N per plant. Symbiotic effectiveness was found to be highest with the native phage-sensitive isolate ASR011, whereas it was at a minimum with the phage-resistant isolates, ISR050 and ISR078. Additionally, the effectiveness of these strains was evaluated using six soybean cultivars belonging to different maturity groups; namely, Brags, Lee, Pusa20, PK416, JS33S and NRC37. Analysis of variance data evidenced significant differences due to both symbionts, for the majority of the tested parameters. The CB1809, USDA123, and ASR011 strains evidenced relatively superior symbiotic effectiveness with soybean cultivars Brags, Lee and JS335. Strain ISR078 evidenced no significant responses with any of the cultivars. The ASR031 strain performed moderately well with all tested cultivars. The symbiotic response of all the strains was quite poor with cultivar PK416. Our studies showed that a significant relationship existed between the phage sensitivity and symbiotic efficiency of the bacterial strains with the host-cultivars.