Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
Journal of Radiopharmaceuticals and Molecular Probes
/
v.1
no.1
/
pp.62-73
/
2015
We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.
Journal of Korean Society of Industrial and Systems Engineering
/
v.31
no.1
/
pp.74-82
/
2008
The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.
To maintain improved image quality in mammography, the quality control process is performed using the ACR (American college of radiology) phantom. In addition, many studied were performed by fabricating the customized breast phantom to provide more information in mammography. Thus, the purpose of this study was to evaluate the image quality by designing the modified ACR phantoms. The five modified acrlylic ACR phantoms were designed by considering insert position and phantom thickness. The phantoms were consisted of 4.5, 3.0, and 1.5 cm in terms of phantom thickness, and 3.0, 2.0, and 0.5 cm in terms of insert position, respectively. The acquired images were evaluated by PSNR (peak signal to noise ratio), RMSE (root mean square error), CC (correlation coefficient), CNR (contrast to noise ratio), and COV (coefficient of variation). Based on the similarity analysis, the result is suitable between conventional and new designed phantoms. In addition, the CNR and COV results in terms of insert position showed that image quality for 0.5 cm was 2.3 and 27.4% improved compared with 2 and 3 cm, respectively. According to phantom thickness results, the CNR result for 1.5 cm and COV result for 4.5 cm were 50.1 and 62.7% improved compared with that those conditions. In conclusion, we confirmed that the image quality depends on the breast size and thickness through modified ACR phantom study.
Currently, state-of-the-art devices such as SPECT, PET/CT, and PET/MRI are rapidly spreading nationwide, and the penetration rate of nuclear medical devices is also ranked fifth in the world. However, PET/MRI's system is slower and less common because it is more complex than PET/CT. The purpose of this study is to provide optimal information on PET/MRI according to the patient's disease. The subjects obtained information on head and neck cancer, pediatric patients, breast cancer patients, heart disease patients, lung cancer patients, and rectal cancer patients. We tried to accumulate protocols by obtaining a lot of information about each disease. In diagnosing head and neck cancer, it is believed that it is highly likely to be used in evaluating preoperative stage determination, recurrence and remote metastasis after treatment, and unclear primary cervical lymph node metastasis. Diagnosis and continuous follow-up of pediatric patients can increase patient benefits by minimizing radiation exposure. Breast cancer provides a comprehensive evaluation of the clinical need to determine the extent of disease in breast and local lymph nodes and the systematic stages of early diagnosis or recurrence. In diagnosing heart disease patients, MR-based PET motion correction helps to realize the full potential of PET images. For lung cancer patients, the clinical value and usefulness of the resolution and detection ability of integrated PET/MRI for soft tissues such as lung cancer will be sufficient. In diagnosing rectal cancer patients, the detection of missing residual diseases can change the clinical response evaluation for rectal cancer patients treated with TNT, and both the initial stage and treatment response evaluation are possible. Therefore, this literature study provided basic clinical data for PET/MRI tests.
Purpose : To evaluate the role of magnetic resonance imaging (MRI) in the diagnosis of papillary lesions of the breast. Materials and methods : Among 45 papillary lesions diagnosed at ultrasonography-guided core biopsy (USCB), 27 benign papillary lesions in 22 patients who underwent breast MRI were reviewed. The excsional biopsy was performed in 1-10 days after MRI was done. In MRI findings, lesions were considered suspicious if they show irregular, rim enhancement, or linear enhancement in morphologic evaluation, or washout enhancement pattern of delayed phase in dynamic enhancement characteristics. Diffusionweighted images were analyzed according to visibility of lesions. MRI findings were correlated with pathologic results at excisional biopsy. Results : At excisional biopsy, two lesions (9%) were diagnosed malignant in 22 benign papillary lesions without atypia by USCB and 4 (80%) were malignant in 5 benign papillary lesions with atypia by USCB. Among 18 lesions detected on MRI, 16 lesions showed suspicious findings on MRI, 11 lesions (69%) were diagnosed as benign and 5 (31%) were malignant. Among 12 lesions detected on diffusion weighted imaging, 10 lesions were diagnosed as benign and 2 were malignant. MRI findings were not significantly correlated with pathologic results at excisional biopsy. Conclusion : MRI findings were not useful to predict malignancy in benign papillary lesions diagnosed at USCB, because MRI findings of these were mostly suspicious (88.9%, 16/18). The benign papillary lesion should be included in the false positive lesion on breast MRI.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.3C
/
pp.374-386
/
2004
The mammogram provides the way to observe detailed internal organization of breasts to radiologists for the early detection. This paper is mainly focused on efficiently detecting the Microcalcification's Region Of Interest(ROI)s. Breast cancers can be caused from either microcalcifications or masses. Microcalcifications are appeared in a digital mammogram as tiny dots that have a little higher gray levels than their surrounding pixels. We can roughly determine the area which possibly contain microcalifications. In general, it is very challenging to find all the microcalcifications in a digital mammogram, because they are similar to some tissue parts of a breast. To efficiently detect microcalcifications ROI, we used four sequential processes; preprocessing for breast area detection, modified multilevel thresholding, ROI selection using simple thresholding filters and final ROI selection with two stages of neural networks. The filtering process with boundary conditions removes easily-distinguishable tissues while keeping all microcalcifications so that it cleans the thresholded mammogram images and speeds up the later processing by the average of 86%. The first neural network shows the average of 96.66% recognition rate. The second neural network performs better by showing the average recognition rate 98.26%. By removing all tissues while keeping microcalcifications as much as possible, the next parts of a CAD system for detecting breast cancers can become much simpler.
The Journal of Korean Society for Radiation Therapy
/
v.33
/
pp.55-62
/
2021
Purpose: This study aims to contribute to the reduction of complications of breast cancer radiation therapy by analyzing skin dose differences due to Set-up error. Materials and Method: Pseudo breast was produced using a 3D printer, applied to the phantom, and images were acquired through CT. Treatment plan was carried out that the PTV, which contains 95% of the prescription dose, could be more than 95% of the volume, so that Dmax did not exceed 107% of the prescription dose. The Set-up error was evaluated by applying ±1mm/±3mm/±5mm to the X-axis, Y-axis, and Z-axis. Results: The dose-variation in skin due to Set-up error was approximately 106% to 123% compared to prescription dose, and the highest dose in skin was 49.24 Gy at 5mm Set-up error in the lateral direction of the X-axis. More than 107% of the prescription dose was the widest at 6.87 cc in skin lateral. Conclusions: If a Set-up error occurs during left breast cancer VMAT, a great difference in skin dose was shown in the lateral direction of the X-axis. If more effort is made to align the X-axis of the breast treated during CBCT registration, the dose-variation of skin will be reduced.
Purpose: it is very important to differentiate breast cancer from benign mass. There are many reports to evaluate the differential diagnosis under the several diagnostic tools. We evaluated the usefulness of mammography and Tc-99m MIBI scintimammography in the differential diagnosis of breast mass and correlated with pathologic findings. Materials and Methods: This study included 80 patients (a8e: 24-72, mean: 48.4) who underwent mammography and Tc-99m MIBI scintimammography for breast masses. Scintimammographies (anterior-posterior and lateral projections) were acquired in 10 minutes and 2 hours after intravenous injection of Tc-99m MIBI. four specialists in diagnostic radioloay and nuclear medicine evaluated the findings of breast masses under the mammography and Tc-99m MIBI scintimammography, and calculated the tumor to background (T/B) ratio. The pathologic results were obtained and we statistically analyzed the correlations between pathologic results and imaging findings under the mammography and Tc-99m MIBI scintimammography by chi-square and correlation test. Results: The sensitivity, specificity, positive predictive value, and negative predictive value of mammography for detection of breast cancer were 87.5%, 56.3%, 75.0%), and 75.0% respectively. 45 cases of 80 patients were suspicious for breast cancer under the Tc-99m MIBI scintimammography. 41 cases of 45 patients were confirmed as breast cancer and the remaining 4 cases were confirmed as benign masses. The sensitivity, specificity, positive predictive value and negative predictive value of Tc-99m MIBI scintimammography for detection of breast cancer were 85.4%, 87.5%, 91.1%, and 80.8% respectively. The sensitivity of scintimammography was lower than that of mammography for detection of breast cancer, however the specificity, positive predictive value, and negative predictive value were higher. In the benign mass, the mean T/B ratio in 10 minutes was $1.409{\pm}0.30$, and that in 2 hours was $1.267{\pm}0.42$. The maximal T/B ratio of benign mass in 10 minutes was $1.604{\pm}0.42$, and that in 2 hours was $1.476{\pm}0.50$. In the malignant mass, the mean T/B ratio in 10 minutes was $2.220{\pm}1.07$, and that in 2 hours was $1.842{\pm}0.75$. The maximal T/B ratio of malignant mass was $2.993{\pm}1.94$, and that in 2 hours was $2.480{\pm}1.34$. And the T/B ratio under the early and delayed images were meaningful. Conclusion: The scintimammography is useful diagnostic tool to differentiate breast cancer from benign mass, although the sensitivity of mammography for detection of breast mass is high. Especially, the use of the T/B ratio is helpful to diagnose breast cancer.
Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
Progress in Medical Physics
/
v.30
no.2
/
pp.49-58
/
2019
Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.
Han Youngyih;Cho Jae Ho;Park Hee Chul;Chu Sung Sil;Suh Chang-Ok
Radiation Oncology Journal
/
v.20
no.1
/
pp.24-33
/
2002
Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.