In this paper, it is described the performance of the breast cancer detection system that is composed of sensing, RF signal and image reconstruction part. Especially in the reconstruction algorithm, the amplitude and the phase of electric fields are used as compare value. So we improved to get the stable values of measured amplitude and phase of electric fields. Through compare images of reconstruction, we confirmed the performance of improved system.
Purpose: We investigated whether the diagnostic performance of SPECT scintimammography (SMM) can be improved by adding computer-aided diagnosis (CAD) of ultrasonography (US). Materials and methods: We reviewed breast SPECT SMM images and corresponding US images from 40 patients with breast masses (21 malignant and 19 benign tumors). The quantitative data of SPECT SMM were obtained as the uptake ratio of lesion to contralateral normal breast. The morphologic features of the breast lesions on US were extracted and quantitated using the automated CAD software program. The diagnostic performance of SPECT SMM and CAD of US alone was determined using receiver operating characteristic (ROC) curve analysis. The best discriminating parameter (D-value) combining SPECT SMM and the CAD of US was created. The sensitivity, specificity and accuracy of combined two diagnostic modalities were compared to those of a single one. Results: Both SPECT SMM and CAD of US showed a relatively good diagnostic performance (area under curve = 0.846 and 0.831, respectively). Combining the results of SPECT SMM and CAD of US resulted in improved diagnostic performance (area under curve =0.860), but there was no statistical differerence in sensitivity, specificity and accuracy between the combined method and a single modality. Conclusion: It seems that combining the results of SPECT SMM and CAD of breast US do not significantly improve the diagnostic performance for diagnosis of breast cancer, compared with that of SPECT SMM alone. However, SPECT SMM and CAD of US may complement each other in differential diagnosis of breast cancer.
Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
Progress in Medical Physics
/
v.17
no.1
/
pp.24-31
/
2006
Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.
Parabens were commonly used for preventing the growth of microorganisms as preservatives in the pharmaceutical, cosmetic and food industry. Also, parabens are known endocrine disruptors because of their estrogenic effects on human. Parabens affect the endocrine system and show adverse effect such as, genital malformations, precocious puberty and testicular cancer in young children, infants and fetuses. In this study, we developed analytical method for four parabens (methyl paraben, ethyl paraben, propyl paraben, butyl paraben) in human breast milk which frequently consumed by newborn baby. The analytes were extracted using liquid-liquid extraction (LLE) after enzyme hydrolysis with protease and lipase, then quantitative analysis was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method validation results were as follows; the linearity of calibration curves were excellent with coefficient of determinations (r2) higher than 0.999, the limit of detections (LODs) were 0.019~0.044 ng/mL, the accuracies were 85.3~105.9% and the precisions were lower than 10%. The average concentration ± standard deviation of parabens in ten human breast milk sample were MP 0.660 ± 0.519 ng/mL, EP 1.631 ± 2.081 ng/mL and PP 0.326 ± 0.320 ng/mL, and BP was not detected.
Kim, Min Wook;Oh, Won Seok;Lee, Jae Woo;Kim, Hyun Yul;Jung, Youn Joo;Choo, Ki Seok;Nam, Kyung Jin;Bae, Seong Hwan;Kim, Choongrak;Nam, Su Bong;Joo, Ji Hyeon
Archives of Plastic Surgery
/
v.47
no.6
/
pp.583-589
/
2020
Background Reduction mammoplasty or mastopexy is performed as an additional balancing procedure in patients with large or ptotic breasts who undergo breast-conserving surgery (BCS). Radiation therapy on breasts that have undergone surgery may result in changes in the volume. This study presents a comparative analysis of patients who received post-BCS balancing procedures to determine whether volume changes were larger in breasts that received radiation therapy than on the contralateral side. Methods Thirty-six participants were selected among patients who received BCS using the inverted-T scar technique between September 2012 and July 2017, were followed up for 2 or more years, and had pre-radiation therapy computed tomography images and post-radiation therapy images taken between 12 and 18 months after completion. The average age of the participants was 53.5 years, their average body mass index was 26.62 kg/㎡. Results The pre- and post-radiation therapy volumes of the breasts receiving BCS were 666.08±147.48 mL and 649.33±130.35 mL, respectively. In the contralateral breasts, the volume before radiation therapy was 637.69±145.72 mL, which decreased to 628.14±166.41 mL after therapy. The volume ratio of the affected to the contralateral breasts was 1.05±0.10 before radiation therapy and 1.06±0.12 after radiation therapy. Conclusions The ratio of the volume between the two breasts immediately after surgery and at roughly 18 months postoperatively was not significantly different (P=0.98). For these reasons, we recommend a simultaneous single-stage balancing procedure as a reasonable option for patients who require radiation therapy after BCS without concerns regarding volume change.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.420-426
/
2022
Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.
Purpose: Breast cancer is known to be more vulnerable to bone metastasis and lymph node metastasis than other types of cancer, and nuclear examinations whole body bone scan and lymphoscintigraphy are performed commonly before and after breast cancer operation. In case whole body bone scan is performed on the day before lymphoscintigraphy, the radiopharmaceutical taken into and remaining in the bones provides anatomical information for tracking and locating sentinel lymph nodes. Thus, this study purposed to examine how much bone density affects in locating sentinel lymph nodes. Materials and Methods: The subjects of this study were 22 patients (average age $52{\pm}7.2$) who had whole body bone scan and lymphoscintigraphy over two days in our hospital during the period from January to December, 2009. In the blind test, 22 patients (average age $57{\pm}6.5$) who had lymphoscintigraphy using $^{57}Co$ flood phantom were used as a control group. In quantitative analysis, the relative ratio of the background to sentinel lymph nodes was measured by drawing ROIs on sentinel lymph nodes and the background, and in gross examination, each of a nuclear physician and a radiological technologist with five years' or longer field experience examined images through blind test in a five-point scale. Results: In the results of quantitative analysis, the relative ratio of the background to sentinel lymph nodes was 14.2:1 maximum and 8.5:1 ($SD{\pm}3.48$) on the average on the front, and 14.7:1 maximum and 8.5:1 ($SD{\pm}3.42$) on the average on the side. In the results of gross examination, when $^{57}Co$ flood phantom images were compared with images containing bones, the score was relative high as 3.86 ($SD{\pm}0.35$) point for $^{57}Co$ flood phantom images and 4.09 ($SD{\pm}0.42$) for bone images. Conclusion: When whole body bone scan was performed on the day before lymphoscintigraphy, the ratio of the background to sentinel lymph nodes was over 10:1, so there was no problem in locating lymph nodes. In addition, we expect to reduce examination procedures and improve the quality of images by indicating the location of sentinel lymph nodes using bone images as body contour without the use of a source.
Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.
Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.
Mammoplasty is currently increasing not only for cosmetic surgery, but as well as for the recovery after breast cancer surgery. The prostheses inserted into the breasts of women who have undergone mammoplasty, hide the breast substances and it is becoming increasingly difficult to diagnose breast disease, and fear is growing by the concern of the prostheses bursting by the strap. So we want to develop a strap applicable to women with prostheses inserted, to determine the usefulness, and we also want to compare the utility by comparing the total area of the Inner and Outer parts of the breast and Posterior Nipple Line (PNL), after obtaining video by applying the existing strap and the developed strap to phantom of the prostheses inserted patient shape. When the pressure by the developed pressure, the total area increased by 10.09% from CC view to $9,813.797mm^2$, 3.88% from CC-ID view to $7,621.531mm^2$, PNL increased by 3.41% from CC view to $90.916mm^2$, 1.64% from CC-ID view to$75.357mm^2$. And the breast tissue of the thorax side increased 3.53% from CC view to $177.725mm^2$, and 6.57% from CC-ID view to $152.510mm^2$, and we could verify that the prostheses were completely eliminated in the CC-ID images of developed strap, compared with the existing strap.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.