• Title/Summary/Keyword: Breakdown properties

Search Result 857, Processing Time 0.031 seconds

Effect of microwave radiation on physical special quality of normal, high amylose and waxy corn starches (마이크로웨이브를 조사한 옥수수전분의 물리적 특성변화)

  • Lee Su Jin;Choe Yeong Hui
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 2004
  • Effect of microwave radiation on physico-chemical properties of cor'n starches was studied. Waxy com, com and high amylose com starches of varying moisture content(20~35%) were subjected to microwave processing(2450MHz) at $120^{\circ}$ and the experimental starch samples were examined by a X-ray diffractometry, rapid viscosity analyzer(RVA) and. with the samples in temperature was observed and the peaks of high amylose com starches at $2^{\circ}$=5.0, 15.0 and $23.0^{\circ}$, were disappeared indicating the melting of crystallines while those of com and waxy com had not changed. A change in gelatinization pattern was observed in the case of corn starches from type A with nearly no peak-viscosity and breakdown to type C. Except a decreased viscosity, no change was observed in those of waxy com starches.

  • PDF

The Effects of Ethanol on Nano-emulsion Prepared by High-energy Emulsification Method (고에너지유화법을 이용하여 제조한 나노에멀젼에 대한 에탄올의 영향)

  • Won, Bo-Ryoung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • The objective of this study was to investigate the effect of ethanol on the emulsion prepared by poly(oxyethylene) hydrogenated castor oils (HCOs)/oil/ethanol/water system. Emulsions were prepared using homogenizer as high-energy method. To evaluate effect of ethanol on the emulsion, physical properties such as droplet size and size distribution were determined and other components were almost fixed to analyze the effect of ethanol on the surfactant. In case of HCO-20, the droplet diameter was in micrometers and the droplet size was gradually deceased as the ethanol concentration was increased. The droplet diameter of nano-emulsion containing 4.00 % of HCO-30 was shown in nanometers and its mean droplet size was $128.15{\pm}1.06nm$ and the most stable at the 4.25 % of ethanol contents by the Form. 1 and $136.10{\pm}0.99nm$ at the 3.50 % of ethanol contents by the Form. 2. Similarly, the droplet diameter of nano-emulsion containing 4.00 % of HCO-40 and 4.50 % ethanol by the Form. 1 was $115.85{\pm}0.78nm$ and $121.15{\pm}0.35nm$ at the 3.25 % of ethanol by the Form. 2 and both size distributions were also narrow. Finally, the droplet size of nano-emulsion containing 4.00 % of HCO-60 and 2.25 % ethanol was $262.35{\pm}0.64nm$ and the most stable. The higher ethanol concentrations became the smaller size of emulsion became in the microscale emulsion but we determined nano-emulsion had a minimum size at a certain ethanol concentration. The results showed that the breakdown process of this nano-emulsion could be attributed to Ostwald ripening. This study about effect of ethanol on the emulsion showed that ethanol contents to prepare a stable emulsion could be determined as studying the effect of ethanol on the emulsion with the type of surfactants.

Physicochemical Characteristics of the Sorghum(Sorghum bicolor L. Moench) Powder following Low Temperature-Microparticulation (저온초미분쇄에 따른 수수가루의 이화학적 특성)

  • Kim, Hyun-Young;Seo, Hye-In;Ko, Jee-Yeon;Kim, Jung-In;Lee, Jae-Saeng;Song, Seuk-Bo;Jung, Tae-Wook;Kim, Ki-Young;Kwak, Do-Yeon;Oh, In-Seok;Jeong, Heon-Sang;Woo, Koan-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.656-663
    • /
    • 2012
  • Two sorghum(Sorghum bicolor L. Moench cv. Hwanggeumchal-susu and Miryang 3) samples were milled using different milling methods, and their physicochemical properties were tested. Particle size was classified into five groups such as pin mill and low temperature-microparticulation(LTM; 10,000, 20,000, 30,000, and 40,000 rpm). The water absorption index (WAI), water solubility index(WSI), and a rapid Visco analyzer(RVA) were used to examine particle size distribution and color differences. Particle size of sorghum flour prepared using LTM was lower than that prepared using a pin mill. Particle size was further reduced by successive dry milling of the LTM flour. Lightness of colored pigments increased when particle size decreased. The WAI of Miryang 3 pin milling(M1) flour was the lowest after LTM, and WSI was higher in the order of M2, M3, M4, and M5. LTM sorghum flour had significantly higher pasting viscosity, as determined using a rapid Visco analyzer. LTM Miryang 3 sorghum flour(M2~M5) flour showed lower breakdown viscosity and higher final viscosity compared to those of M1 flour, resulting in an increased setback value.

Quality Characteristics of Pound Cake with Citrus mandarin Powder during Storage (감귤 분말을 첨가한 파운드케이크의 저장 중 품질 특성)

  • Park, Yeong-Sun;Shin, Sol;Shin, Gil-Man
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1022-1031
    • /
    • 2008
  • Pound cakes were prepared with Citrus mandarin powder(CMP) cultivated in JeJu Island, Korea. The impact of CMP amount level, which was incorporated into wheat flour by the ration of 0, 5, 10, 15, and 20% based on a flour weight, on the rheology and sensory profile of the pound cakes was measured. Moisture content of 13.70%, crude protein 5.12%, crude lipid 1.30%, crud ash 1.92%, respectively. Also evaluation was performed on the changes in physicochemical properties of the pound cakes during storage at 4 and $30^{\circ}C$. According to the amylogram, gelatinization temperature of the control dough was $63.35^{\circ}C$ and those of the dough with CMP were $63.85{\sim}66.55^{\circ}C$. Maximum viscosity of the dough was 686 B.U in the control, those were 575 B.U, 553 B.U, 504 B.U and 401 B.U in the dough with 5, 10, 15, and 20% CMP, respectively. The retrogradation degree(setback value) of CMP dough was $31{\sim}57%$ lower than that of the control dough under the same conditions. Water holding capacity of pound cake was increased gradually in proportion to the amount of CMP. The CMP addition decreased the brightuess(L) of pound cakes but increased redness(a) and yellowness(b). Hardness of pound cakes was significantly increased by CMP addition, while springiness, adhesiveness and cohesiveness were decreased. Based on sensory evaluation, pound cakes added with CMP were not significantly different in color and texture, while that of 10% CMP was significantly high in taste, flavor, and overall preferences, compared to the control. pH of pound cake with CMP was decreased during storage, showing that pH of CMP samples was lower than the control. Titrated acidity of pound cake with CMP was increased rapidly from storage for 10 days, which the changes in degree was fast in accordance with CMP amount. The Hunter's color value of pound cake with CMP was decreased, as the storage time proceeded. In the samples prepared with CMP, the firmness, adhesiveness, gumminess and chewiness was increased as the storage time proceeded, while springiness and cohesiveness was decreased.

  • PDF

Production and characterization of rice starch from broken rice using alkaline steeping and enzymatic digestion methods (쇄미로부터 알칼리침지법과 효소소화법을 이용한 쌀전분의 생산 및 특성)

  • Kim, Reejae;Lim, SongI;Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.731-738
    • /
    • 2021
  • This study investigated the physicochemical properties of rice starch isolated from broken rice using alkaline steeping (AKL) and enzymatic digestion (ENZ) methods. Broken rice starch (BRS) by AKL and ENZ possessed crude protein contents (0.6-1.4%) acceptable to commercial products of native starch and belonged to an intermediate amylose rice starch. AKL-BRS and ENZ-BRS showed a typical A-type crystal packing arrangement with small variations in their relative crystallinity. ENZ-BRS exhibited higher gelatinization onset and peak temperatures, and a narrower gelatinization temperature range than AKL-BRS, indicating that annealing occurred in ENZ-BRS. Lower swelling power and solubility were generally observed in the ENZ-BRS. ENZ-BRS also showed slower viscosity development, higher peak and trough viscosities, and lower breakdown, final, and setback viscosities, compared to those in AKL-BRS. These results are ascribed to the annealing phenomenon in ENZ-BRS. Overall, BRS from cheap broken rice using AKL and ENZ could contribute to the expansion of rice starch utilization in food and non-food industries.

Dietary fiber content and physicochemical properties of starch isolated from potato cultivars (감자 품종에 따른 식이섬유 및 전분의 이화학적 특성)

  • Kim, Hyun-Joo;Choi, Jang Gyu;Lee, Byong Won;Han, Narae;Lee, Jin Young;Lee, Yu-Young;Kim, Mihyang;Kang, Moon Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.377-385
    • /
    • 2022
  • This study examined the dietary fiber content of potato and physicochemical characteristics of potato starch isolated from various cultivars. The total dietary fiber content of the Arirang1ho cultivar was 6.30%, which was higher than that of other cultivars. The amylose content ranged from 36.76-55.75%, with Sooseon having the highest amylose content. Analysis of the degree of amylopectin polymerization revealed that all cultivars had a high proportion of DP (degree of polymerization) 13-24. The phosphate content ranged from 45.90-84.23 mg/100 g, with Arirang1ho having the highest and Eunseon having the lowest phosphate content. The resistant starch content ranged from 58.94-79.87%. Geumseon showed the highest breakdown in the range of 587.45-1,129.72 RVU (rapid viscosity unit). Sooseon had the lowest gelatinization enthalpy value for potato starch in the range of 5.54-7.64 J/g. These results provide basic data for the use of potatoes in industrial applications.

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.