The Effects of Ethanol on Nano-emulsion Prepared by High-energy Emulsification Method

고에너지유화법을 이용하여 제조한 나노에멀젼에 대한 에탄올의 영향

  • Won, Bo-Ryoung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology)
  • 원보령 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울산업대학교 자연생명과학대학 정밀화학과)
  • Published : 2009.09.30

Abstract

The objective of this study was to investigate the effect of ethanol on the emulsion prepared by poly(oxyethylene) hydrogenated castor oils (HCOs)/oil/ethanol/water system. Emulsions were prepared using homogenizer as high-energy method. To evaluate effect of ethanol on the emulsion, physical properties such as droplet size and size distribution were determined and other components were almost fixed to analyze the effect of ethanol on the surfactant. In case of HCO-20, the droplet diameter was in micrometers and the droplet size was gradually deceased as the ethanol concentration was increased. The droplet diameter of nano-emulsion containing 4.00 % of HCO-30 was shown in nanometers and its mean droplet size was $128.15{\pm}1.06nm$ and the most stable at the 4.25 % of ethanol contents by the Form. 1 and $136.10{\pm}0.99nm$ at the 3.50 % of ethanol contents by the Form. 2. Similarly, the droplet diameter of nano-emulsion containing 4.00 % of HCO-40 and 4.50 % ethanol by the Form. 1 was $115.85{\pm}0.78nm$ and $121.15{\pm}0.35nm$ at the 3.25 % of ethanol by the Form. 2 and both size distributions were also narrow. Finally, the droplet size of nano-emulsion containing 4.00 % of HCO-60 and 2.25 % ethanol was $262.35{\pm}0.64nm$ and the most stable. The higher ethanol concentrations became the smaller size of emulsion became in the microscale emulsion but we determined nano-emulsion had a minimum size at a certain ethanol concentration. The results showed that the breakdown process of this nano-emulsion could be attributed to Ostwald ripening. This study about effect of ethanol on the emulsion showed that ethanol contents to prepare a stable emulsion could be determined as studying the effect of ethanol on the emulsion with the type of surfactants.

본 연구에서는 poly(oxyethylene) hydrogenated castor oils (HCOs)/오일/에탄올/물로 이루어진 에멀젼에 대한 에탄올의 영향을 연구하였다. 에멀젼은 고에너지법인 균질기(homogenizer)를 병합하여 제조하였다. 에멀젼에 대한 에탄올의 영향을 평가하기 위해 입자 크기와 입자 분포 등의 물리적 특성을 측정하였으며 다른 성분의 조성은 같도록 하였다. HCO-20의 경우 에멀젼의 크기가 마이크로미터 크기에서 에탄올이 증가할수록 입자의 크기가 감소하는 것을 확인하였다. HCO-30의 경우 계면활성제 농도 4.00 %에서 입자 크기가 나노미터 크기로 나타났으며, 에탄올의 농도가 4.25 % 일 때 조성 1에서 입자 크기가 $128.15{\pm}1.06nm$이고 조성 2에서는 $136.10{\pm}0.99nm$로 가장 안정한 나노에멀젼이 생성되었다. 마찬가지로 HCO-40은 계면활성제 농도 4.00 %에서 입자가 나노미터 크기로 나타났으며, 에탄올이 4.50%일 때 조성 1에서 입자 크기가 $115.85{\pm}0.78nm$이고 조성 2는 $121.15{\pm}0.35nm$로 안정한 나노에멀젼이 생성되었다. HCO-60의 경우에서는 계면활성제 농도 4.00 %, 에탄올 농도 2.25 %에서 에멀젼의 크기가 $262.35{\pm}0.64nm$인 안정한 나노에멀젼이 생성되었다. 마이크로 크기의 에멀젼에서는 에탄올의 함량이 증가할수록 입자의 크기가 감소하는 것을 알 수 있었고, 나노에멀젼에서는 에탄올의 특정 농도에서 최저값을 나타냄을 확인하였다. 나노에멀젼의 불안정화 과정은 Ostwald ripening에 의한 것으로 보여진다. 계면활성제 종류에 따른 에멀젼에 대한 에탄올의 영향을 연구함으로써 안정한 에멀젼을 만들기 위한 에탄올의 함량을 계산할 수 있을 것으로 사료된다.

Keywords

References

  1. L. Houillot, J. Nicolas, M. Save, and B. Charleus, Miniemulsion polymerization of styrene using a pH-responsive cationic diblock macromonomer and its nonreactive diblockcopolymer counterpart as stabilizers, Langmuir, 21, 6726 (2005) https://doi.org/10.1021/la050495b
  2. A. Musyanovych, V. Mailander, and K. Landfester, Miniemulsion droplets as single molecule nanoreactors for polymerase chain reaction, Biomacromolecules, 6, 1824 (2005) https://doi.org/10.1021/bm050084+
  3. W. Seifriz, That word 'Emulsoid', Science, 87, 212 (1938) https://doi.org/10.1126/science.87.2253.212
  4. M. Cajkovac, L. Oremovic, and V. Cajkovac, Influence of emulsoid vehicle on the release and activity of allantoin, Pharmazie, 47, 39 (1992)
  5. M. Sznitowska, K. Zurowska-Pryczkowska, S. Janicki, and T. Jarvinen, Miotic effect and irritation potential of pilocarpine prodrug incorporated into a submicron emulsion vehicle, Int. J. Pharm., 184, 115 (1999) https://doi.org/10.1016/S0378-5173(99)00106-4
  6. P. F. Yue, H. L. Yuan, W. F. Zhu, L. B. Cong, H. Xie, Z. G. Liu, L. J. Wang, and X. H. Xiao, The study to reduce the hemolysis side effect of puerarin by a submicronemulsion delivery system, Biol. Pharm. Bull., 31, 45 (2008) https://doi.org/10.1248/bpb.31.45
  7. M. T. Clarkson, D. Beaglehole, and P. T. Callaghan, Molecular diffusion in a microemulsion, Phys. Rev. Lett., 54, 1722 (1985) https://doi.org/10.1103/PhysRevLett.54.1722
  8. K. Mukherjee, D. C. Mukherjee, and S. P. Moulik, Thermodynamics of Microemulsion Formation, J. Colloid Interface Sci., 187, 327 (1997) https://doi.org/10.1006/jcis.1996.4696
  9. J. B. Tagne, S. Kakumanu, and R. J. Nicolosi, Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model, Mol. Pharm., 5, 1055 (2008) https://doi.org/10.1021/mp8000556
  10. S. B. Calderilla-Fajardo, J. Cazares-Delgadillo, R. Villalobos-Garcia, D. Quintanar-Guerrero, A. Ganem- Quintanar, and R. Robles, Influence of sucrose esters on the in vivo percutaneous penetration of octylmethoxycinnamate formulated in nanocapsules, nanoemulsion and emulsion, Drug Dev. Ind. Pharm., 32, 107 (2006) https://doi.org/10.1080/03639040500388540
  11. T. Shimamoto, Studies on the emulsion, I. Phaseinversion by homogenizer processing, Yakugaku Zasshi, 82, 1237 (1962) https://doi.org/10.1248/yakushi1947.82.9_1237
  12. R. Barnadas-Rodriguez and M. Sabes, Factors involved in the production of liposomes with a high-pressure homogenizer, Int. J. Pharm., 213, 175 (2001) https://doi.org/10.1016/S0378-5173(00)00661-X
  13. A. Towata, M. Sivakumar, K. Yasui, T. Tuziuti, T. Kozuka, and Y. Lida, Ultrasound induced formation of paraffin emulsion droplets as template for the preparation of porous zirconia, Ultrason Sonochem, 14, 705(2007) https://doi.org/10.1016/j.ultsonch.2007.01.001
  14. P. Izquierdo, J. Feng, J. Esquena, T. F. Tadros, J. C. Dederen, M. J. Garcia, M. Azemar, and C. Solans, The influence of surfactant mixing ratio on nano-emulsion formation by the PIT method, J. Colloid Interface Sci., 285, 388 (2005) https://doi.org/10.1016/j.jcis.2004.10.047
  15. S. Sajjadi, Nanoemulsion formation by phase inversion emulsification: on the nature of inversion, Langmuir, 22, 5597 (2006) https://doi.org/10.1021/la060043e
  16. Y. Saito and T. Sato, Micellar formation and micellar structure of poly(oxyethylene)-hydrogenated castor oil, Yakugaku Zasshi, 112, 763 (1992)
  17. Y. H. Cho, S. Kim, E. K. Bae, C. K. Mok, and J. Park, Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures, J. Food Sci., 73, 115 (2008)
  18. J. N. Coupland, D. Brathwaite, P. Fairley, and D. J. McClements, Effect of ethanol on the solubilization of hydrocarbon emulsion droplets in nonionic surfactant micelles, J. Colloid Interface Sci., 190, 71 (1997) https://doi.org/10.1006/jcis.1997.4862
  19. W. G. Cho, H. J. Yang, and S. N. Park, Ostwald ripening in hydrogenated lecithin-stabilized oil-inwater nano-emulsions, J. Soc. Cosmet. Scientist Korea, 34(1), 9 (2008)
  20. B. R. Won, M. K. Kang, Y. J. Ahn, and S. N. Park, The effects of ethanol on nano-emulsions containing quercetin preapared by emulsion inversion point method, J. Soc. Cosmet. Scientist Korea, 35(2), 79 (2009)
  21. G. Palazzo, A. Mallardi, M. Giustini, D. Berti, and G. Venturoli, Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesicles, Biophys. J., 79, 1171 (2000) https://doi.org/10.1016/S0006-3495(00)76371-5
  22. H. Ruf, Effects of normalization errors on size distributions obtained from dynamic light scattering data, Bio. Phys. J., 56, 67 (1989) https://doi.org/10.1016/S0006-3495(89)82652-9
  23. L. Beney, E. Linares, E. Ferret, and P. Gervais, Influence of the shape of phospholipid vesicles on the measurement of their size by photon correlation spectroscopy, Eur. Bio. Phys. J., 27, 567 (1998) https://doi.org/10.1007/s002490050167
  24. M. Sharma and S. Yashonath, Breakdown of the Stokes-Einstein relationship: role of interactions in the size dependence of self-diffusivity, J. Phys. Chem. B, 110, 172071 (2006)
  25. J. H. Goll and G. B. Stock, Determination by photon correlation spectroscopy of particle size distributions in lipid vesicle suspensions, Biophys. J., 19, 265 (1977) https://doi.org/10.1016/S0006-3495(77)85586-0
  26. H. Delonca, D. Alvarado, H. Saunal, J. P. Et, and J. P. Laget, Emulsification of vegetable oils: application to olive oil, Int. J. Cosmet. Sci., 4, 83 (1982) https://doi.org/10.1111/j.1467-2494.1982.tb00303.x
  27. J. H. Yao, K. R. Elder, H. Guo, and M. Grant, Theory and simulation of Ostwald ripening, Phys. Rev. B Condens Matter, 47, 14110 (1993) https://doi.org/10.1103/PhysRevB.47.14110