• 제목/요약/키워드: Breakage Monitoring

검색결과 68건 처리시간 0.027초

연삭동력을 이용한 숫돌수명 판정 (A Study on Determinatino of Wheel Life Using Grinding Power in Cylinderical Grinding)

  • 이상태
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.62-67
    • /
    • 2000
  • The dressing time monitoring in cylindrical grinding is very important with respect to machining efficiency. Therefore, the purpose of this paper is to determine the wheel life by monitoring behavior of grinding power for WA, 19A and GC. For this purpose , we investigated indirectly the attritious wear of grain edge, the loading of grinding wheel and the breakage of grain through the grinding power and the surface roughness under various grinding conditions. From obtained the results, the relationship between the wheel life and the average sectional chip area is examined to guide for the determination of dressing time.

  • PDF

압전고분자 센서를 이용한 복합재 구조의 실시간 손상탐지 (Realtime Detection of Damage in Composite Structures by Using PVDE Sensor)

  • 권오양
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.118-121
    • /
    • 2002
  • Polyvinylidene di-fluoride (PVDF) film sensor appeared to be practically useful for the structural health monitoring of composite materials and structures. PVDF film sensors were either attached to or embedded in the graphite/epoxy composite (CFRP) samples to detect the fatigue damage at the bondline of single-lap joints or the tensile failure of unidirectional laminates. PVDF sensors were sensitive enough to detect and determine the crack front in linear location since composites usually produce very energetic acoustic emission (AE). PVDF sensors are extremely cost-effective, as flexible as other plastic films, in low profile as thin as a few tens of microns, and have relatively wide-band response, all of which characteristics are readily utilized for the structural health monitoring of composite structures. Signals due to fatigue damage showed a characteristics of mode II (shear) type failure whereas those from fiber breakage at DEN notches showed that of mode I (tensile) type fracture.

  • PDF

Mechanical Seal의 이상설계 감시에 관한 연구

  • 임순재;최만용;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.166-171
    • /
    • 1992
  • Mechanical seals are generally used in the fields of industries as sealing devices. The failure of mechanical seals like crack, leakage, breakage fast and severe wear, excessive torque, and squeaking result in big problems. For the development of monitoring system, this study was carried out to identify abnormal phenomina on alumina(AI $\_$2/ O /sub3/) seal ring and resin bonded carbon ring, and to propose the proper parameter for monitoring failure on mechanical seals. Sliding were tests are conducted at 12 experimental conditions that contains 3 different contact pressure and 4 surface conditions. Torque, temperature, and acoustic emission are measured. Optical microstructure and scanning electron microscopy are observed for the wear processing every 10 minute sliding at rotation speed of 1750 RPM.

웨이블렛 변환의 위상 지도를 이용한 초기 피팅 결함을 갖는 기어의 상태 감시 (Condition Monitoring in a Gear with Initial Pitting Using Phase Map of Wavelet Transform)

  • 심장선;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.590-595
    • /
    • 2001
  • Vibration transient generated by developing localized fault in gear can be used as indicators of condition monitoring in a gear. In this paper, we propose the phase map for a fault signal using continuous wavelet transform to detect this vibration transient. Local fault induces the abrupt fluctuation of load exciting tooth and phase lag in the vibration signal measured on the gearbox. The relatively large fault like "tip breakage" easily can be detected by the clear fluctuation of exciting load. However, minor fault like "initial pitting" cannot be detected using the load fluctuation. To detect this kind of minor fault, the phase map for a fault signal is taken into account. The phase lag by minor fault is observed well in the phase map.

  • PDF

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Detection of DNA Damage in Carp Using Single-Cell Gel Electrophoresis Assay for Genotoxicity Monitoring

  • Jin, Hai-Hong;Lee, Jae-Hyung;Hyun, Chang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.268-275
    • /
    • 2004
  • To investigate the potential application of the single-cell gel electrophoresis (SCGE) assay to carp as an aquatic pollution monitoring technique, gill, liver, and blood cells were isolated from carp exposed to a direct-acting mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or indirect mutagen, $benzo[\alpha]pyrene$ $(B[\alpha]P)$, then the DNA strand breakage was analyzed using the assay. Based on testing 5 different cell isolation methods and 6 electrophoretic conditions, the optimized assay conditions were found to be cell isolation by filter pressing and electrophoresis at a lower voltage and longer running time (at 0.4 V/cm for 40 min). In preliminary experiments, gill and liver cells isolated from carp exposed to MNNG in vitro exhibited DNA damage signals even with 0.5 ppb exposure, which is a much higher dose than previously reported. In the gill cells isolated from carp exposed to 0.01-0.5 ppm MNNG in vivo, significant dose-and time-dependent increases were observed in the tail for 4 days. As such, the linear correlation between the relative damage index (RDI) values and time for each dose based on the initial 48-h exposure appeared to provide effective criteria for the genotoxicity monitoring of direct-acting mutagenic pollution. In contrast, the in vivo exposure of carp to 0.25-1.0 ppm of $B[\alpha]P$ for 7 days resulted in dose-and time-dependent responses in the liver cells, in which 24-h delayed responses for metabolizing activation and gradual repair after 48 h were also observed. Thus, the negative-sloped linear correlation between the RDI and time at each dose based on the initial 48 h appeared to provide more effective criteria for the genotoxicity monitoring of indirect mutagenic pollution.

인터로킹 블록포장의 저속도로 적용성 평가 (Performance Evaluation of Interlocking Block Pavement for Low Speed Highway)

  • 임무광;류성우;이병태;조윤호
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2014
  • PURPOSES : This study aims to evaluate the performance of interlocking block pavement system for low speed highway. METHODS : Through on-site monitoring, environmental impact assessment of interlocking block pavement such as heat island reduction, traffic safety, noise pollution were evaluated as compared with asphalt pavement. Also the pavement condition and roughness were evaluated according to performance period. RESULTS : Surface temperature of interlocking block pavement was about 7 degree lower than asphalt pavement in midsummer. Compared to asphalt pavement, vehicle speed reduction effect of interlocking block pavement was about 2kph. For low speed driving, the noise pollution was measured at a similar level for both asphalt and interlocking block pavement. After 42month service period, the breakage of block was only 0.24% for the whole surveyed area. IRI of interlock block pavement was estimated within the range of 5~8m/km. CONCLUSIONS : Depending on the performance monitoring results such as heat island reduction, providing traffic safety and keeping a good pavement condition for a long service period, it assures that interlocking block pavement was applicable for low speed road.

BaP 및 TBT에 노출된 넙치와 개조개의 in vivo Comet assay (In vivo Comet Assay on Flounder and Clam Exposed to BaP and TBT)

  • 김소정;정영재;이택견
    • Ocean and Polar Research
    • /
    • 제33권2호
    • /
    • pp.127-133
    • /
    • 2011
  • The comet assay, also called single-cell electrophoresis (SCGE) assay, is a potential sensitive monitoring tool for DNA damage in cells. The primary objective of this study was to use comet assay to ascertain if the blood cells of flounder (Pleuronichthys olivaceus) and muscle cells of clam (Saxidomus purpurata) are suitable for genotoxicity screening. This was achieved by initially exposing blood and muscle cells under in vitro conditions to the reference genotoxin hydrogen peroxide ($H_2O_2$); strong correlation between $H_2O_2$ concentration and comet values were found. Subsequently, the identification of DNA damage in isolated cells from flounder and clam was performed under in vivo exposure to benzo(a)pyrene (BaP) and tributyltin (TBT). Flounder and clam were exposed to different concentrations (1, 10, 50, 100 ${\mu}g/L$) of BaP or TBT for 4 days. Regardless of treated chemicals, blood cells of flounder were more prone to DNA breakage compared to muscle cells of clam. In conclusion, in vivo genotoxicity of BaP and TBT can be biomonitored using the comet assay. This study suggests that flounder and clam do show potential as mediums for monitoring genotoxic damage by comet assay.

축소모형 강트러스 교량의 손상검출을 위한 신경회로망의 적용성 검토 (Neural Net Application Test for the Damage Detection of a Scaled-down Steel Truss Bridge)

  • 김치엽;권일범;최만용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.137-147
    • /
    • 1998
  • The neural net application was tried to develop the technique for monitoring the health status of a steel truss bridge which was scaled down to 1/15 of the real bridge for the laboratory experiments. The damage scenarios were chosen as 7 cases. The dynamic behavior, which was changed due to the breakage of the members, of the bridge was investigated by finite element analysis. The bridge consists of single spam, and eight (8) main structural subsystems. The loading vehicle, which weighs as 100 kgf, was operated by the servo-motor controller. The accelerometers were bonded on the surface of 7 cross-beams to measure the dynamic behavior induced by the abnormal structural condition. Artificial neural network technique was used to determine the severity of the damage. At first, the neural net was learnt by the results of finite element analysis, and also, the maximum detection error was 3.65 percents. Another neural net was also learnt, and verified by the experimental results, and in this case, the maximum detection error was 1.05 percents. In future study, neural net is necessary to be learnt and verified by various data from the real bridge.

  • PDF