• Title/Summary/Keyword: Break load

Search Result 188, Processing Time 0.019 seconds

회귀분석에 의한 모터싸이클 브레이크 디스크의 열변형량에 관한 연구 (A Study on Thermal Deformation Volume of Motorcycle Brake Disk using Regression Analysis)

  • 류미라;변상민;박흥식
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.102-107
    • /
    • 2009
  • The thermal deformation volume of motorcycle break disk was studied using a disk-on-pad type friction tester. Thermal deformation volume of motorcycle break disk have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal deformation volume. In this study, the thermal deformation volume with ANSYS workbench are obtained by application of temperature from mechanical test. From this study, the result was shown that the motorcycle break disk with ventilated hole 3 have the most excellent thermal deformation characteristics. The regression equation with frictional factors which have a trust rate of 95% for prediction of thermal deformation volume of motorcycle break disk was composed.

초고강도 콘크리트의 인발하중과 압축강도와의 관계 (The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete)

  • 고훈범;김기태
    • 한국건축시공학회지
    • /
    • 제18권1호
    • /
    • pp.17-24
    • /
    • 2018
  • 비파괴 시험 중 선 매입 인발시험법은 아마도 현장의 콘크리트 압축강도를 평가하기 위해 널리 사용되는 기술이라고 할 수 있다. 인발시험은 콘크리트 타설 전에 특별히 계획된 형태의 철재 봉을 설치하여 콘크리트가 굳은 다음 그 봉을 인발하여 그때의 하중을 측정하여 콘크리트 강도를 평가하는 방법으로 미국과 캐나다에서는 콘크리트 구조물 공사중에 콘크리트 강도를 결정하는 신뢰할 만한 시험법으로 각각 ASTM C 900과 CSA A23.2에 규격화 되어 있다. 직경 12mm볼트에 홈이 파인 파단형 인발 볼트와 인발너트, 그리고 로드셀이 필요 없는 오일유압펌프로 구성된 간이인발시험법을 초고강도 콘크리트 강도를 추정하기 위하여 제안되었다. 인발시험과 간이인발시험의 이점을 검증하기 위하여, 80MPa 및 100MPa 급 두 가지 유형의 콘크리트로 제작된 4개의 시험벽체와 2개의 슬래브를 대상으로 로드셀을 장착한 간이인발시험을 사용하여 인발시험을 실시하였다. 인발하중과 콘크리트 압축강도, 파단형 인발볼트의 파단 여부를 재령 7일까지는 매일, 그리고 14일, 21일, 28일, 90일에 측정하였다. 인발하중과 콘크리트 압축강도의 상관곡선은 매우 높은 신뢰도를 보여주었으며, 따라서 인발시험이 현장에서 구조물의 초고강도 콘크리트 강도를 평가할 수 있다는 것을 확인할 수 있었다. 파단형 인발볼트 직경과 콘크리트 강도와의 관계식으로 y=0.0184+5.4(x=콘크리트 압축강도(MPa), y=파단형 인발볼트 직경(mm))를 제안하였다. 본 연구에서 얻은 결과로 간이인발시험은 유용하며 저비용, 간편성 및 편의성에 대한 가능성이 검증되었다.

굽힘하중을 받는 배관의 파단전누설거동 및 균열개구변위 (Leak-Before-Break Behavior and Crack Opening Displacement in Piping Under Bending Load)

  • 남기우
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.725-730
    • /
    • 2010
  • 부정정계 배관의 두께 관통 후 파단전누설 거동과 균열개구변위는 정정계 배관과 비교하여 연구 하였다. 부정정 배관은 균열 발생으로 인한 최대 강도의 감소가 비교적 적었다. 부정정 배관계의 파단 전누설 거동은 정정계 배관보다 더 안전 하였다. 균열개구변위는 미관통균열을 가지는 배관에서 균열 관통 후 평가하기 위하여 제안된 소성힌지를 사용하여 평가하였다.

원전 배관 파단전누설 평가를 위한 탄소성 파괴역학 평가 프로그램 개발 (Development of Elastic-Plastic Fracture Mechanics Evaluation Program for Leak-Before-Break Analysis of Nuclear Piping)

  • 박준근;허남수;김예지;이상민
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.35-46
    • /
    • 2020
  • In this paper, a fracture mechanics evaluation system which can be used to assess the leak-before-break (LBB) of nuclear piping is developed. Existing solutions for calculating the fracture mechanics parameters (J-integral and crack opening displacement) required for LBB evaluation were firstly presented. Then a module for calculating J-integral and COD was developed, with an additional module for predicting the critical load based on the crack driving force diagram to finally develop a fracture mechanics evaluation system. To confirm the validity of the proposed evaluation system, finite element (FE) analysis was performed, and the FE J-integral and COD results were compared with prediction results using the J-integral and COD estimations program. Furthermore, the critical load assessment module was verified by comparing the actual pipe test results (Battelle test data) with prediction results using the proposed program.

원주방향 관통균열이 존재하는 배관의 새로운 J-적분 및 COD 계산식-인장하중과 굽힘모멘트가 동시에 작용하는 경우 (New Engineering J and COD Estimation Method for Circumferential Through-Wall Cracked Pipes-Combined Tension and Bending Load)

  • 허남수;김윤재;김영진
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.85-90
    • /
    • 2001
  • In order to apply the Leak-Before-Break(LBB)concept to nuclear piping, accurate estimation of J-integral and crack opening displacement(COD) is essential for complex loading, such as combined tension and bending. This paper proposes a new engineering method to estimate J-integral and the COD for circumferential through-wall cracked pipes subject to combined tension and bending loading. The proposed method to estimate the COD is validated against three published pipe test data, generated from a monotonically increasing bending load with a constant internal pressure, which shows excellent agreements.

  • PDF

실험계획법에 의한 이륜자동차 브레이크 디스크의 마멸량 예측 (Wear Loss Presumption of Motorcycle Disk Brake Using Design of Experiment)

  • 박규정;박흥식
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.15-21
    • /
    • 2007
  • The effect of manufacturing parameters on friction characteristics of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the frictional factor such as number of ventilated disk hole, applied load, sliding speed, and sliding distance. However, it is difficult to know the mutual relation of these factors. In this study, the friction characteristics using design of experiment containing 4 elements were investigated for an optimal condition for the best motorcycle break system employing regression analysis method. From this study, the result was shown that the applied load in frictional factors was the most important, next to sliding speed, number of ventilated disk hole.

  • PDF

태안 시설원예단지의 온실 냉난방 부하 분석 (Analyses of Heating and Cooling load in Greenhouse of Protected Horticulture Complex in Taean)

  • 서원명;배용한;허해준;곽철순;이석건;이종원;윤용철
    • 한국농공학회논문집
    • /
    • 제51권6호
    • /
    • pp.45-52
    • /
    • 2009
  • This study was conducted in the process that the basic plan of the formation of the thermal energy complex in the Iwon reclaimed land of Taean was being made. Targeting for the large-sized greenhouse to be made in this area, it examined the cooling and heating load and the amount of ventilation, and also analyzed the economic efficiency of heating. The research results are as per the below: The minimum ambient temperature of this area was measured on January 7, 2001, which was $-18.7^{\circ}C$, and the maximum ambient temperature of this area was measured on July 24, 1994, which was $36.7^{\circ}C$. The maximum heating load was 39,011 MJ/h, but the date when the maximum heating load was not consistent with the date when the minimum temperature was measured. The maximum cooling load was 88,562MJ/h, It was approximately 2.3 times of the maximum heating load, which was measured at 14:00 hours on September 4, 2000. The maximum amount of ventilation heat was 138,639MJ/h. Assuming the rate of solar heat use as 10%, 20%, 50%, and 100%, the total sum of cost-benefit would be ₩-193,450,000, ₩-634,930,000, ₩-3,372,960,000, and ₩-9,850,420,000, respectively 20 years later. The break-even point of the geothermal heat pump would be about 4 years for 10% use, about 3 years for 20% or 50% use, and approximately 6 years for 100% use. It was found that 50% use would be most advantageous. In case two systems are combined, the break-even point will be 10 years, 8 years, and 11 years respectively.

모터싸이클 브레이크 디스크의 열응력 해석에 관한 연구 (A Study on Thermal Stress Analysis of Motorcycle Disk Brake)

  • 류미라;문성동;박흥식
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.308-314
    • /
    • 2008
  • The thermal stress have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal stress of motorcycle break disk. For this, temperature of motorcycle break disk is measured using a disk-on-pad type friction tester with full factorial design containing above 4 elements. and the thermal stress analysis of it was carried out using with ANSYS workbench. From this study, the result was shown that the regression equation which have a trust rate of 95% for thermal stress presumption of motorcycle break disk with frictional factor was composed. It is possible to apply for another automobile parts.

주관적 작업부하를 이용한 하체 서포터 평가에 관한 연구 (The Study Used Brog's Scale on the Lower Extremity Supporter)

  • 김유궁;장은준
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.105-110
    • /
    • 2008
  • This study focused on the decreased effect of the work load on using the lower extremity supporter in kneeling posture. Fatigue measures included subjective discomfort ratings through the use of the Borg's CR-10 scale based parameters. The resting period and work method were considered as independent variables. The break time conditions are grouped into 10 seconds after work for 1 min and not exist break time. The method of work conditions are divided into four types. There are kneeling with the lower extremity supporter, kneeling with the knee protector, just kneeling and squatting. The result of the ANOVA of the shift value of subjective discomfort showed the followings: 1) There were differences as regards to the method of the work, the break time and the part of body($p{\leq}0.05$). 2) The lower extremity supporter showed the least subjective discomfort in other part of body except the upper leg.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.