• Title/Summary/Keyword: Branch parameter

Search Result 174, Processing Time 0.027 seconds

Form, Function and Longevity in Fucoid Thalli: Chlorophyll a Fluorescence Differentiation of Ascophyllum nodosum, Fucus vesiculosus and F. distichus (Phaeophyceae)

  • Kim, Kwang-Young;Garbary, David j
    • ALGAE
    • /
    • v.24 no.2
    • /
    • pp.93-104
    • /
    • 2009
  • Imaging-PAM fluorometry was used to assess the chlorophyll a fluorescence parameter ${\Phi}_{PSII}$ (effective quantum yield) in Frcus vesiculosus. F. disttchus. ssp. distichus and AscophyIIum nodosum. The objective was to show variadon in fluorescence yield associated with age and frond organ, and to illustrate the spatial scales at which photosynthetic parameters vary on fucoid thalli. In addition, our species represented taxa in different but related genera, species with different ecoloeies (rock pool and non rock pool species), morphologies (with and without air bladders) and longevities (several to 20 or more years). A further objective was to determine the extent to which photosynthetic parameters reflected these differences- Effective quantum yield declined substantially with age in F. vesiculosus and F. distichus ssp. distichus, whereas ${\Phi}_{PSII}$ in A. nodosum was maximal after three years. In A. nodosum ${\Phi}_{PSII}$ was still high in branch segments at least seven years old. Older branches of A. nodosum showed relatively higher and more homogeneous photosynthetic capacity relative to Fucus species. Surfaces of air bladders in A. nodosum and F. vesicu- losus had ${\Phi}_{PSII}$ that was not significantly different from the highest rates, achieved in these species. The heterogene- ity of photosynthetic efficiency is consistent with morphological and developmental differences among the species and their ecology. in particular the longevity of A. nodosum fronds.

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu;Shaoping Bi;Sicheng Shao;Hadi Babaei
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2023
  • In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.

Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Mohammad Gholami;Mojtaba Gorji Azandariani;Ahmed Najat Ahmed;Hamid Abdolmaleki
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • This paper studies the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams subjected to arbitrary boundary conditions. According to Eringen's nonlocal theory and Hamilton's principle, the underlying equations of motion have been obtained for BFG nanobeams. Moreover, the variable substitution method is utilized to establish the structure's state-space differential equations, followed by forming the dynamic stiffness matrix based on state-space differential equations. In order to compute the natural frequencies, the current study utilizes the Wittrick-Williams algorithm as a solution technique. Moreover, the nonlinear vibration frequencies calculated by employing the proposed method are compared to the frequencies obtained in previous studies to evaluate the proposed method's performance. Some illustrative numerical examples are also given in order to study the impacts of the nonlocal parameters, material property gradient indices, nanobeam length, and boundary conditions on the BFG nanobeam's frequency. It is found that reducing the nonlocal parameter will usually result in increased vibration frequencies.

On the snap-buckling phenomenon in nanocomposite curved tubes

  • Dan Chen;Jun Shao;Zhengrong Xu;Hadi Babaei
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • The nonlinear snap-through buckling of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) curved tubes is analytically investigated in this research. It is assumed that the FG-CNTRC curved tube is supported on a three-parameter nonlinear elastic foundation and is subjected to the uniformly distributed pressure and thermal loads. Properties of the curved nanocomposite tube are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite tube are temperature-dependent. The governing equations of the curved tube are obtained using a higher-order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved tube. Equations of motion are solved using the two-step perturbation technique for nanocomposite curved tubes which are simply-supported and clamped. Closed-form expressions are provided to estimate the snap-buckling resistance of FG-CNTRC curved pipes rested on nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of the distribution pattern and volume fraction of CNTs, thermal field, foundation stiffnesses, and geometrical parameters on the instability of the curved nanocomposite tube.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Miscibility and Properties of Ethyl-Branched Polyethylene/Ethylene-Propylene Rubber Blends (II) (에틸 가지화된 폴리에틸렌과 에틸렌-프로필렌 고무 블렌드의 혼화성과 물성(II))

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • Ethyl-branched polyethylene [PE(2)] containing 2mole% ethyl branch and three ethylene-propylene rubbers (EPR's) having the same ethylene(E)-propylene(P) molar ratio(E/P=50/50) with different stereoregularity, that is, random EPR (r-EPR), alternating-EPR (alt-EPR) and isotactic-alternating-EPR (iso-alt-EPR) were mixed for the investigation or their properties depending on the stereoregularity. Crystallinity of the prepared blends decreased with increasing content of amorphous EPR because of a decrease in both the degree of annealing and kinetics of diffusion of the crystallizable polymer content. With blend composition, crystallinity was reduced with the stereoregularity in EPR. The thermodynamic interaction parameter(x) for the three blend systems approximately equals to zero near the melting point. These systems were determined to be miscible on a molecular scale near or above the crystalline melting point or the crystalline PE(2). From the measurement of $T_m$ vs. $T_c$, the behavior of PE(2) is mainly due to a diluent effect of EPR component. The spherulite size measured by small angle light scattering (SALS) technique depended upon blend composition, and stereoregularity of EPR. The size of spherulite was enlarged with the content of rubbery EPR and the decrease of stereoregularity in EPR.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Factors Influencing Participation of Online Community and Intention of Joint Purchasing in Korea and China (온라인 커뮤니티 참여도와 공동구매의도에 영향을 미치는 요인: 한국과 중국을 중심으로)

  • Park, Cheol;Wang, Can
    • Information Systems Review
    • /
    • v.15 no.1
    • /
    • pp.69-89
    • /
    • 2013
  • This study examined the factors influencing participation of online community and intention of joint purchase in Korea and China. The online community member actively participate the social activities that can cause the effective communication characters and the great support of the society. In these two factors, the sense of worth related with compensation, norm, interaction, shared values will be taken as the independent variables. These variables as a parameter are related with the intention of joint purchase. To be aware of their behavior norm, interaction, compensation, shared value, these factors will be taken as predicting their behaviors in the online community and their further participating, commitment and co-shopping intention. As the results, compensation, norms, interaction, shared values had significant effects on the participation of online community, and this affected the intention of joint purchase in online community. Compensation and norm were significant in Korean sample. Implications and further direction are suggested on the base of the results.

  • PDF

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.