• 제목/요약/키워드: Braking test

검색결과 282건 처리시간 0.024초

초기기동시 추진력과 제동력 관계에 대한 고찰 (Discussion of the relationship between tractive power and braking power in initial time)

  • 이기식;한성호;정권일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1643-1648
    • /
    • 2009
  • The braking system of train must posses the large baking effort in order to stop the train safety within the limited traveling distance. but, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid. because the applied braking force exceeds the allowable adhesive force. this skid causes not only to increase the a stopping distance but also to deteriorate the safety of train and damage the rall surface by wheel flat. In the present paper, braking force for disk brake of Tilting Train eXpress(TTX) was measured though on convention line test and the traction force was estimated by using the analytic model in skid condition. also, we have discussed the relationship between the bake force and traction force in starting condition.

  • PDF

가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정 (Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error)

  • 황진권;송철기
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

매입형 영구자석 동기전동기를 적용한 전기기계식 제동장치의 비상제동 성능평가 (A Evaluation of Emergency Braking Performance for Electro Mechanical Brake using Interior Permanent Magnet Synchronous Motor)

  • 백승구;오혁근;박준혁;김석원;김상수
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.170-177
    • /
    • 2020
  • 본 논문은 전기기계식제동장치(EMB : Electro Mechanical Brake, 이하 EMB)의 제동 압부력(clamping force) 제어방법과 제동시험장비(dynamo test equipment)를 활용한 제동성능 평가결과에 대하여 다룬다. EMB와 관련한 연구는 자동차 분야에서 대부분 수행되었으며, 다양한 제어방법에 대한 정적상태의 압부력 시험결과를 주로 다루고 있으나 본 논문은 동적상태에서의 성능평가를 수행하였다. EMB의 구동을 위해 3상 매입형 영구자석 동기전동기(IPMSM : Interior Permanent Magnet Synchronous Motor, 이하 IPMSM)가 적용되었으며 유한요소법(FEM : Finite Element Method, 이하 FEM) 해석 소프트웨어인 JMAG을 통하여 설계 및 해석을 수행하였다. EMB의 압부력제어를 위해 전류제어, 속도제어 및 위치제어가 수행되었으며, 전류제어기는 단위전류당 최대토크제어(MTPA : Maximum Torque Per Ampere, 이하 MTPA)가 적용되었다. 제동성능평가는 공압식 제동장치의 비상제동 성능시험 절차와 동일한 방법으로 수행되었으며 시험장비에 설치된 고속철도차량의 차륜을 110 km/h, 230 km/h 및 300 km/h로 회전하는 상태에서 각각의 속도 조건에 따른 EMB의 제동 압부력을 인가하여 감속성능을 확인하였다. 최고속도(300 km/h) 상태에서 비상제동 시험결과는 73초의 시간이 소요되었으며 차세대고속철도차량(HEMU-430X)에 적용된 공압식 제동장치의 성능시험 결과와 비교를 통하여 제동소요 시간 및 감속패턴의 유사함 확인하였다.

자전거 탑승자 대상 자동비상제동장치의 성능평가 시나리오 (Safety Performance Evaluation Scenarios of Autonomous Emergency Braking System for Cyclist Collision)

  • 김태우;이경수;민경찬;이은덕
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.19-24
    • /
    • 2017
  • This paper present a performance evaluation scenarios to assess the safety performance of autonomous emergency braking (AEB) system for cyclist collision. To guarantee the safety performance of AEB for cyclist, AEB system should be tested in various scenarios which can be occurred in real driving condition. For this, real-traffic car-to-cyclist collision data are analyzed to classify the real traffic collision scenarios. Using this information, typical car-to-cyclist collision scenarios are selected. Also, in order to develop the detail features of these collision scenarios, several accident cases related with these scenarios are explained. Based on these information, test scenarios which can describe the car-to-cyclist collisions occurred in Korea are proposed. For practicality and feasibility of the test scenarios, proposed scenarios should be designed to assess the safety performance of AEB system effectively. For this, some test scenarios are combined or removed based on the consideration about the effectiveness of each scenario to the assessment of the performance of AEB system. To confirm that the proposed test scenarios are realistic and physically meaningful, simulation is conducted using simple AEB system in proposed test scenarios.

Braking Performance of Ceramic Coated Discs

  • Kang, B.B.;Lee, H.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.429-430
    • /
    • 2002
  • In this study, three kinds of brake: discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Plasma spray coating technique was used to coat ceramic powder on the discs. In the test, four commercial sintered brake pads were coupled with discs. Ceramic coated discs have shown good stability in friction coefficient at high speed and high energy braking conditions. However, ceramic coated discs caused more wear loss of pad mass than the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. Steel disc showed fluctuating friction coefficient at high speed but less wear loss of pad mass than ceramic coated discs.

  • PDF

한국형 고속철도차량의 추진 및 제동 특성에 관한 연구 (A Study of Traction and Braking of Korean High Speed Rail Vehicle)

  • 김석원;한영재;김진환;백광선;전영욱;노애숙
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.372-374
    • /
    • 2002
  • In this paper, we studied for performance of traction and braking for on-line test and evaluation of korean high speed rail vehicle. It is composed of 6 DAMs(Data Acquisition Modules), 2 monitoring modules and 1 main computer. The software should set and control the hardware of the measuring system, perform the analysis and calculation of measuring data and interface between users and the measuring system. As a result, It has been shown a good performance of traction and braking for test vehicle.

  • PDF

한국형고속열차의 디스크-패드 마찰계수 측정에 관한 연구 (A Study on the Measurement of Disc-Pad Friction Coefficient for HSR-350x)

  • 김영국;박찬경;박태원;김석원
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.677-681
    • /
    • 2006
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop the train safely at its pre-decided position, it is necessary to combine the various brakes properly. The Korean high speed train (HSR-350x) has adopted a combined electrical and mechanical (friction) braking system. In this study, the measuring method that can obtain the disc braking forces and friction coefficient between disc and pad during on-line test of HSR-350x has been suggested and verified through the comparison of the results obtained from this method and those of the results of the dynamo-tests.

한국형 고속전철의 디스크 제동력 측정 방법에 관한 연구 (A Study on the Measuring Method of Disc Braking Force for HSR 350x)

  • 김석원;김영국;박태원
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.244-251
    • /
    • 2004
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop safely the train at its pre-decided position, it is necessary to combine properly the various brakes. Korean high speed train (HSR 350x) has adopted a combined electric and mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, the measuring method that can take a measurement of the braking forces for disc brake and wheel disc brake has been suggested and we have verified that this method is valid through on-line test of HSR 350x.

상용차량의 브레이크 시스템과 차량 시스템 주파수 분석을 통한 브레이크 저더의 실험적 고찰 (An Experimental Study on Brake Judder via the Frequency Analysis of the Brake System and Vehicle System of a Commercial Vehicle)

  • 문일동;김종대;오재윤
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1131-1138
    • /
    • 2007
  • This paper studies experimentally on the building-up process for the amplitude of a commercial truck vibration induced by brake judder. A front axle drum equipped with a drum brake system is utilized for this experiment. A brake dynamo test, a real vehicle ride test and a real vehicle braking test are performed for the analysis of brake judder. The brake dynamo test measures judder by applying brake chamber pressures of 1, 2 and 3 bar at initial brake pad temperatures of $100^{\circ}C$ and $150^{\circ}C$. In order to assess the vertical acceleration at the front axle, the real vehicle ride test on a straight test road with velocities of 20, 40, 60 and 80 km/h is performed. The real vehicle braking test is carried out at the deceleration rate of 0.2g from a velocity of 90km/h for evaluating the vertical, lateral and longitudinal accelerations both at the front axle and at the cab floor under the driver's seat. The magnitudes and frequencies of the measured peak accelerations from the brake dynamo test, the real vehicle ride test and the real vehicle braking test are comparatively analyzed. This paper shows that the vibration produced by brake judder is built up due to the brake system's peak acceleration frequency being close to the vehicle ride mode's frequency.

도시철도용 전기기계식 제동장치의 특성시험 (Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles)

  • 김민수;오세찬;권석진
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.