• 제목/요약/키워드: Braking pressure

검색결과 134건 처리시간 0.038초

제동장치에서 고주파수 PWM 제어에 의한 맥동특성 연구 (Study on the Characteristics of Surge Pressure by High Frequency PWM Control in Braking System)

  • 김병우
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.109-114
    • /
    • 2008
  • The solenoid valve of ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz on-off control. When the on-off valve is switched from open state to closed state, there are braking force deterioration, noise and vibration due to surge pressure in the wheel cylinder. In this study, identifies surge pressure in the braking process of ABS, and investigates the way to reduce the phenomenon. To reduce the surge pressure, PWM(Pulse Width Modulation) control with high frequency of 20kHz was attempted. In conclusion, by using the results of this study for the pressure surge prediction, we could expect enhancement of braking performance in ABS.

고속차량용 디스크 제동 특성 및 제동제어 방법기술에 대한 연구 (A study on Characteristics of Disc Brake of & Technology of Brake Control System in High Speed Railway)

  • 신유정;최경진;곽재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.393-397
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of high speed railway with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • 장성욱;예훈;김철수;김현수
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF

ABS 유압 장치의 유충 현상에 관한 연구 (A Study on the Pressure Surge of ABS Hydraulic System)

  • 김병우;송창섭
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.140-147
    • /
    • 2001
  • The solenoid valve in ABS hydraulics, modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the inlet valve is switched from open state to closed state, there are braking force degration, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder. In this study, identifies pressure surge phenomenon in the braking process of a ABS, and investigates the way to reduce the phenomenon. For the purpose theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. During this analysis, we could find pressure surge characteristics change due to hydraulic line change and PWM control conditions. In conclusion, by using the results of this study for the pressure surge prediction and reduction method, we could expect braking performance enhancement in Anti-Lock Braking System.

  • PDF

고속철도 제동제어 시험평가기술 방법에 대한 연구 (A study on Test and Evaluation & Technology of Brake Control System in High Speed Railway)

  • 신유정;최경진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.103-108
    • /
    • 2005
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result. This study is designed to analyze the air pressure control about braking force in rolling stock, also, by comparing braking force of KTX with that of high speed train. This paper suggests to establish a method of computation of braking force form the air pressure control. And The high speed train researches into patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

철도차량의 비상제동거리 해석 시스템

  • 진원혁;이성창;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.747-750
    • /
    • 1995
  • As railway trains run faster high performance braking system are necessary because more energy needs to be dissipated due to increased kinetic energy. In this work a portable computer based prediction system for emergency braking distance has been developed. The algorithm for the system is based on braking theory and empirical results of actual braking test. The computer is connected to the sensors to measure the velocity and the braking pressure in real train. It is expected that this system will be utilized to predict emergency braking distance during actual operation of the train

  • PDF

상용 트럭의 공압 브레이크 제동 특성에 미치는 인자에 대한 연구 (Analysis of the Effect of the Parameter on the Air Braking Response Time of Heavy duty Truck)

  • 김진택;조병수;백병준
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 2014
  • 상용 트럭에서 탑재하고 있는 공압을 이용하는 브레이크 시스템에서 제동시간을 최소화 하기 위해 다양한 인자들에 대한 연구를 진행하였다. 실험 결과와 1차원 유체유동 네트워크 해석코드(FLOWMASTER) 결과와 비교하기 위하여 실험 지그를 제작하였다. 밸브 포트, 파이프 길이, 주변의 열적 환경에 대한 영향에 대해 제동 응답 시간과 압력 감소를 고찰하였다. 또한 탱크 압력에 대한 압력 감소에 대해 상관관계식을 도출하였다.

압력커플링 정유압 변속기를 이용한 에너지 절감 유압시스템에 관한 연구 (A Study of Energy Saving Hydraulic System by A Pressure Coupling Hydrostatic Transmission)

  • 도황팅;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권1호
    • /
    • pp.10-17
    • /
    • 2012
  • Nowadays, the demand of energy saving is increasing more and more while the natural resources have been exhausted. Besides, the emission gas caused by vehicles has been being a serious environment problem. Therefore, many studies have been carried out, especially focusing on braking energy regeneration, in order to save energy as well as reduce emission of mobile vehicles. In this paper, we propose a closed-loop hydrostatic transmission for braking energy regeneration with two configurations to reduce the energy consumption by recovering the braking energy. The effectiveness of the proposed system was verified by simulation. The simulation results indicated that the pressure coupling configuration gave better performance in comparison to flow coupling configuration about 40.8%, 61.7% and 53.8% reduction of fuel consumption in 10 mode, 10 mode modified profile and highway schedules, respectively.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

피에조밸브를 적용한 전자유압브레이크의 압력제어 (Advanced Pressure Control of Piezoelectric Valve on Electro-hydraulic Braking)

  • 독고종훈;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1576-1577
    • /
    • 2007
  • As a intelligent valve piezoelectric valve is to applied to various fields of application. Piezoelectric valves have fast response time and good linearity for pressure control but its hysteresis displacement by its stack actuator influences on pressure control in electro-hydraulic braking. Solenoid valves are traditional element to control hydraulic pressure but this paper proposes piezoelectric valve for brake pressure control with hysteresis compensation.

  • PDF