• Title/Summary/Keyword: Braking System

Search Result 752, Processing Time 0.026 seconds

A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power (도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구)

  • Han, Sung-Woo;Kim, Sung-An;Cho, Yun-Hyun;Byun, Gi-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.

A Study on the Cause Analysis of Human Error Accidents by Railway Job

  • Byeoung-Soo YUM;Tae-Yoon KIM;Sun-Haeng CHOI;Won-Mo GAL
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • Purpose: This study investigates human error accidents in the Korean railway sector, emphasizing the need for systematic management to prevent such incidents, which can have fatal consequences, especially in driving-related jobs. Research design, data and methodology: This paper analyzed data from the Aviation and Railway Accident Investigation Board and the Korea Transportation Safety Authority, examining 240 human error accidents that occurred over the last five years (2018-2022). The analysis focused on accidents in the driving, facility, electric, and control fields. Results: The findings indicate that the majority of human error accidents stem from negligence in confirmation checks, issues with work methods, and oversight in facility maintenance. In the driving field, errors such as signal check neglect and braking failures are prevalent, while in the facility and electric fields, the main issues are maintenance delays and neglect of safety measures. Conclusions: The paper concludes that human error accidents are complex and multifaceted, often resulting from a high workload on engineers and systemic issues within the railway system. Future research should delve into the causal relationships of these accidents and develop targeted prevention strategies through improved work processes, education, and training.

Development and Empirical Validation of an Electric Vehicle Battery Consumption Analysis Model (전기차 배터리 소모량 분석모형 개발 및 실증)

  • In-Seon Suh;Young-Mi Lee;Sang-Yul Oh;Myeong-Chang Gwak;Hyeon-Ji Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.523-532
    • /
    • 2024
  • In popular tourist destinations such as Jeju and Gangwon, electric rental cars are increasingly adopted. However, sudden battery drain due to weather conditions can pose safety issues. To address this, we developed a battery consumption analysis model that considers resistive energy factors such as acceleration, rolling resistance, and aerodynamic drag. Focusing on the effects of ambient temperature and wind speed, the model's performance was evaluated during an empirical validation period from November to December 2023. Comparing predicted and actual state of charge (SoC) across different routes identified ambient temperature, wind speed, and driving time as major sources of error. The mean absolute error (MAE) increased with lower temperatures due to reduced battery efficiency. Higher wind speeds on routes 1 and 6 resulted in larger errors, indicating the model's limitation in considering only tailwinds for aerodynamic drag calculations. Additionally, longer driving times led to higher actual SoC than predicted, suggesting the need to account for varying driver habits influenced by road conditions. Our model, providing more accurate SoC predictions to prevent battery depletion incidents, shows high potential for application in navigation apps for electric vehicle users in tourist areas. Future research should endeavor to the model by including wind direction, HVAC system usage, and braking frequency to improve prediction accuracy further.

An Improvement Study on Brake System for KUH-1 (한국형 기동헬기의 제동장치 개선에 관한 연구)

  • Choi, Jae Hyung;Lim, Hyun-Gyu;Yoon, Jong Jin;Kang, Deuk Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.292-299
    • /
    • 2017
  • The KUH-1's Wheel Brake Assembly which is Brake System is an essential component to perform flight mission for pilot. It has function of taxing, differential braking and parking to sustain landing capability. However, the skid and abrasion of tire were occurred in mass-produce operation. Also, if it is occurred on the ground, the flight can not be performed. In this case, the defect is a major cause of the decrease in the operation rate of aircraft. In this paper, the cause of the defect in flight was identified and the failure process was organized. Also, it describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

A research for improvement methods in the aspect of safety engineering through risk analysis of facilities for multiple use - Focused on escalator and passenger conveyors - (다중이용시설물 위험분석을 통한 안전공학적 개선 방안에 관한 연구 (에스컬레이터 및 수평보행기를 중심으로))

  • Kwon, Sun-Geol;Kim, Jin-Soo;Kim, Chang-Eun
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • For the matter of elevator, one of the multi-use facilities for unspecified public, the JIS has re-established and reformed to apply to the environment in South Korea for the past 20 years. In the aspect of safety assurance, it was inevitable to suggest improved measures. The government, Ministry of Public Administration and Security has secured the safety by enhancing the safety management functions in the elevator inspection standards and expanding its safety device measures. Further, the international inspection standard has been introduced, which is about unifying inspection standard system into the international standard code. In March 14th 2012, the international standard (EN) has been amended and fully announced. Escalator and passenger conveyor among lift devices have several common danger factor that cause safety accident. First, the accident caused by decreased braking power of brake. Second, the accident caused by the rate difference between handrail and tread-board. Third, the accident caused by defects of contraflow preventing device or carelessness inspection. Fourth, the accident caused by wet tread-board or wet floor of platform which makes passenger slip and fall. As the improvements to prevent and reduce these negligent accidents, the inspection list to check and methods should be subdivided and applied for each accident likelihood cause for safety management enhancement and safety assurance of existing escalator and passenger conveyors. The escalators and passenger conveyors without safety devices in existence should be obliged to modify the part of the system or install additional safety device. With making these measures obligations, it requires to improve the system to be suitable for the international inspection standard and to have measures to prevent safety accidents. It also needs to arrange improvements for skid accident of tread-board by the external environment factors such as snow and rain.

Optimization Design of Commercial Large Gas Oven Systems (상업용 대형 가스오븐 시스템의 최적 설계)

  • Kim, Do-Hyun;Yu, Byeonghun;Kum, Sungmin;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.21-28
    • /
    • 2016
  • This research was conducted for the optimal design of large commercial gas oven system. Equivalent ratio was determined through a numerical analysis and experiments on the combustion condition of the combustor. After reviewing the supply capacity of burner(20,000 kcal) and control method of convection fan, two types of heat exchangers designed. In order to maintain a uniform temperature inside the oven is required convection fan braking system. The center temperature in the oven rises more rapidly when the convectional fan is rotated in the counterclockwise direction than the counter-clockwise direction. And The efficiency of the system by installing a large heat transfer area was higher.

Design of adhesive wireless bookbinding machine with optimal motor control and automatic cover insertion (최적의 모터 제어 및 겉표지 자동 투입 기능을 적용한 접착식 무선 제본기 설계)

  • Song, Je-Ho;Lee, In-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.198-203
    • /
    • 2019
  • An adhesive wireless bookbinding machine was designed with optimal motor control and automatic cover insertion for bookbinding. The noise level was improved by modifying the thrust of the machine and changing from a compressor method to an AC induction motor control method. The automatic cover insertion function was added to improve the task speed. Motor and decelerator damage can be caused by sudden braking and acceleration of the motor rotation (clockwise and counter-clockwise), so a buffer-type locational control system was developed to secure stable movement and durability. The complicated internal design was also simplified, and the volume and weight were decreased. The results show that the noise was decreased by 57% from 135 dB to 71.7 dB, and the task speed was decreased by 57% from 18 s to 9.58 s. The automatic cover insertion was designed to supply a maximum of 130 sheets per supply.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

A Research on V2I-based Accident Prevention System for the Prevention of Unexpected Accident of Autonomous Vehicle (자율주행 차량의 돌발사고 방지를 위한 V2I 기반의 사고 방지체계 연구)

  • Han, SangYong;Kim, Myeong-jun;Kang, Dongwan;Baek, Sunwoo;Shin, Hee-seok;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.86-99
    • /
    • 2021
  • This research proposes the Accident Prevention System to prevent collision accident that can occur due to blind spots such as crossway or school zone using V2I communication. Vision sensor and LiDAR sensor located in the infrastructure of crossway somewhere like that recognize objects and warn vehicles at risk of accidents to prevent accidents in advance. Using deep learning-based YOLOv4 to recognize the object entering the intersection and using the Manhattan Distance value with LiDAR sensors to calculate the expected collision time and the weight of braking distance and secure safe distance. V2I communication used ROS (Robot Operating System) communication to prevent accidents in advance by conveying various information to the vehicle, including class, distance, and speed of entry objects, in addition to collision warning.

Headway Calculation and Train Control Algorithm for Performance Improvement in Radio based Train Control System (무선통신기반 열차제어시스템에서의 운전시격 계산과 간격제어 성능개선을 위한 열차간격제어 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Lee, Sung-Hoon;Kim, Ja-Young;Quan, Zhong-Hua
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6949-6958
    • /
    • 2015
  • Radio based train control system performs train safe interval control by receiving in realtime the position information of trains driving in the control area of the wayside system and providing onboard system in each train with updated movement authority. The performance of the train control system is evaluated to calculate the minimum operation headway, which reflects the operation characteristics and the characteristics of the train as well as the interval control performance of the train control system. In this paper, we propose the operation headway calculation for radio based train control system and a new train interval control algorithm to improve the operation headway. The proposed headway calculation defines line headway and station headway by the estimation the safety margin distance reflecting the performance of the train control system. Furthermore the proposed Enhanced Train Interval Control(ETIC) algorithm defines a new movement authority including both distance and speed, and improves the train operation headway by using braking distance occurring inevitably in the preceding train. The proposed operation headway calculation is simulated with Korean Radio-based Train Control System(KRTCS) and the simulated result is compared to improved train interval control algorithm. According to the simulated results, the proposed operation headway calculation can be used as performance indicator for radio based train control system, and the improved train control algorithm can improve the line and station headway of the conventional radio based train control system.