• Title/Summary/Keyword: Braking System

Search Result 751, Processing Time 0.027 seconds

System Mode and Sensitivity Analysis for Brake Judder Reduction (브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석)

  • Hwang In-Jin;Park Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

A Study on the V2V Safety Evaluation Method of AEB (AEB의 V2V 안전성 평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • There are trying to reduce damage from automobile accident in many countries. In many automobile companies, there have been active study on development of ADAS (Advanced Driver Assistance Systems) for commercialization, in order to reduce damage from automobile accident. ADAS is the system providing convenience and safeness for drivers. Generally, ADAS is composed of ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). AEB of the ADAS, it is an autonomous emergency braking system and it senses potential collide and avoids or degrades it. Therefore AEB plays a significant role in reducing automobile accident rate. However, AEB safety evaluation method is not established not yet. For this reason, this study suggests safety evaluation scenarios with adding cut-in, sensor malfunctioning scenario that scenario domestic street conditions considered as well as original standard AEB scenario of Euro NCAP for establishment of safety evaluation method of AEB. And verifying validity of suggested scenario by comparing the calculated values of the theoretical formulas presented in the previous study with results of the actual vehicle test.

An Experimental Study on the Operating Limit Characteristics of Autonomous Emergency Braking System (긴급제동장치 작동 한계 특성에 대한 실험적 연구)

  • Kim, Jonghyuk;Choi, Jihun;Park, Jungwoo;Park, Jongjin;Park, Hasun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • Among the various functions of ADAS (Advanced Driver Assistance System), the most important and representative function to the safety of vehicle passengers is AEB (Autonomous Emergency Braking system). In South Korea, laws are in progress from 2022 for making it mandatory for passenger vehicles to be installed. And as AEB-equipped vehicles continues to increase in the future, the demand for accident analysis related to the AEB function is expected to increase in the future. In order to find out the operating limits of AEB, it is necessary to consider the situations exceeding the standards covered by EuroNCAP. Therefore we have performed four experiments in this study, including situations encountered in real-word traffic conditions, i.e., an oblique stop of Global Vehicle Target (GVT) and ADAS sensor failures. These experimental results are expected to be of great help in accurate and reliable accident analysis by considering them when analyzing traffic accidents for ADAS vehicles.

Vibration of Steel Composite Railway Bridges under High Speed Train (고속열차하중 하의 강합성형 철도교의 진동)

  • Chang, Sung Pil;Kwark, Jong Won;Ha, Sang Gil;Kim, Sung Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.577-587
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two I-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs are fully connected with steel girders, the offset between slabs and girders is modeled using constraint equation. The track system is modeled using beams on elastic foundation theory. And, the TGV train model is developed in 2-dimension considering bouncing and pitching motion. And braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies on the variation of natural frequency of bridge, speed parameter, vehicle modeling method, braking action of train, etc are performed.

  • PDF

Power System of Fuel Cell Tram (연료전지궤도차량의 동력시스템)

  • Chang, Seky;Mok, Jai-Kyun;Lim, Tae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.320-325
    • /
    • 2005
  • Power of fuel cell tram is supplied by only fuel cell system or hybrid system of fuel cell and battery/super capacity. Fuel cell is operated by hydrogen, which is fed directly from hydrogen tank or by reforming gasoline or methanol into hydrogen. Power system is preferred with hybrid of fuel cell and battery/super capacity since it improves total energy efficiency through interaction of hybrid components and restores energy regenerated by braking. Also, power supply system by fuel cell hybrid should be designed to output optimum energy efficiency depending on driving mode of fuel cell tram.

  • PDF

Study on Brake System of Canada RAV Rapid Transit (캐나다 무인 운전 전동차 제동 시스템 고찰)

  • Ryu, Hyeon-Gyu;Choi, Cheol-Han;Eun, Jung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1646-1649
    • /
    • 2007
  • The optimal braking control system is determined according to the required operating condition, for example brake rate. On that reason each train has its own various special features. This paper describes a study on the Brake Control System of Canada RAV Rapid Transit which also has various special features, to help comprehensive concept of brake control system including Cross Brake Control System and Guaranteed Emergency Brake Rate.

  • PDF

Technical specification of Electric Multiple Unit with Tilting Express (전기식 틸팅차량(TTX)의 구성 및 기술사양)

  • Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.30-33
    • /
    • 2004
  • This paper suggested that the technical specification of tilting train EMU for speed up on existing lines. High speed strategy of existing lines are the modification of railway system which are made on cant, lengths of transition curves, the catenary system and train system. Tilting technology is more useful a strategy for speed increases on existing lines with low investment needed. We performed a feasibility study which is considered out real track conditions and designed propulsion and braking system of tilting EMU system.

  • PDF

A Study on the Optimal Driving by Analysis on EMU Running Result and Simulation (전동열차 주행결과와 시뮬레이션 분석을 통한 최적주행 연구)

  • Kim, Chi-Tae;Kim, Dong-Hwan;Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.129-133
    • /
    • 2012
  • As people are getting concerned to Environment recently, researches on the environmentally-friendly and effective railway system have been conducted in every aspects. Especially as it became known that the pattern of train driving causes the difference in energy consumption, the researches on the train driving to minimize the energy consumption are gaining a lot of interest. The main study showed the optimal driving to minimize energy consumption while driving after analyzing real driving data measured by EMU of Bundang-line real driving, determining the impact on energy consumption due to train driving pattern changes, executing a variety of simulation on real driving patterns by Matlab Simulink and finally driving between stations by given driving times.

Four Quadrant Drives of Electric Vehicle by Two Quadrant Chopper (2상한 쵸퍼에 의한 전기자동차의 4상한 운전)

  • Shin, Jong-Han;Sung, Nark-Kuy;Lee, Seung-Hwan;Kang, Seung-Wook;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.473-475
    • /
    • 1996
  • In this paper, bilateral variable-ratio dc chopper system for electric vehicle is proposed. We present the method which is able to simplify the main synthetic chopper circuit by selecting among the forward powering, forward regenerative braking, backward powering, and backward regenerative braking only by control signal. By conducting the experiment with separately excited dc motor, it is confirmed that two quadrant chopper can drive four quadrant operation.

  • PDF

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.