• Title/Summary/Keyword: Braking Motion

Search Result 63, Processing Time 0.025 seconds

A study on the effects of active suspension upon vehicle handling (능동 현가장치가 차량의 핸들링에 미치는 영향에 관한 연구)

  • Lee, Jung-Sup;Kwon, Hyok-Jo;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.603-610
    • /
    • 1998
  • This paper develops a 7 DOF vehicle model to study the effects of the active suspension on ride. The model is used to derive a control law for the active suspension using a full state linear optimal control technique. A wheelbase preview type active suspension is also considered in the control law derivation. The time delay between wheelbases is approximated using Pade approximation technique. The ride model is extended to a 14 DOF handling model. The 14 DOF handling model includes lateral, longitudinal, yaw and four wheel spin motions in addition to the 7 DOF ride model. A control law which is derived considering only ride related parameters is used to study the effects of the active suspension on a vehicle handling. J-turn maneuver simulation results show that the active suspension has a slower response in lateral acceleration and yaw rate, a bigger steady state lateral acceleration and an oversteer tendency. Lane changing maneuver simulation results show that the active suspension has a little bigger lateral acceleration but a much smaller roll angle and roll motion. Braking maneuver simulation results show that the active suspension has a much smaller pitch angle and pitch motion.

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

Design and Speed Control of ER Brake System Using GER Fluids (GER 유체를 이용한 ER Brake System의 설계 및 속도 제어)

  • Yook, J.Y.;Choi, S.B.;Yook, W.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • This paper presents robust control performance of a direct current(DC) motor with brake system adopting a giant electrorheological(GER) fluid, whose distinguished feature is an extremely high value of yield stress. As a first step, Bingham characteristics of the GER fluid is experimentally investigated using the Couette type electroviscometer. A cylindrical type of ER brake is then devised based on the Bingham model, and its braking torque is evaluated. Structural analysis of ER break is performed using ANSYS. After formulating the governing equation of motion for the DC motor with ER brake system, a sliding mode control algorithm, which is very robust to external disturbances and parameter uncertainties, is synthesized and experimentally realized in order to achieve desired rotational speed trajectories. The tracking responses of the control system are then evaluated and verified by presenting speed control performance.

Maneuver Analysis of Full-Vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1125-1130
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological (ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

  • PDF

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

Robust Adaptive Regenerative Braking control of Switched Reluctance Machine for electric vehicles (전기자동차용 스위치드 릴럭턴스 전동기의 강인 적응형 회생제동제어)

  • Namazi, M.M.;Rashidi, A.;Saghaian-nezhad, S.M.;Lee, D.H.;Ahn, J.W
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.649-651
    • /
    • 2015
  • This paper describes a robust adaptive sliding mode control (RASMC) for torque ripple minimization of switched reluctance motor (SRM) using it in automotive application. The objective is to control effort smoothness while the system is under perturbations by unstructured uncertainties, unknown parameters and external disturbances. The control algorithm employs an adaptive approach to remove the need for prior knowledge within the bound of perturbations. This is suitable for tackling the chattering problem in the sliding motion of sliding mode control method. The algorithm then incorporates modifications in order to build a chattering-free modified robust adaptive sliding mode control using Lyapunov stability theory.

  • PDF

Dynamic Stability Analysis of A Vehicle in Limit Driving for Crash Avoidance (충돌회피를 위한 극한 운전시 자동차의 동적안정성 해석)

  • Kim, S.P.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.106-123
    • /
    • 1997
  • In this study, vehicle directional stability is investigated for limit driving for crash avoidance maneuver using a full vehicle dynamic model. The model was analytically validated using typical step steering and lane change simulation. Limit driving condition for the vehicle model was quoted from research results of references. It was demonstrated that instable vehicle motion was caused by not only road conditions but also driving conditions. Also, the simulation showed that braking combined with steering caused very hazardous situation in crash avoidance maneuver. Finally, phase plane plot approach was used to evaluate the dynamic instability.

  • PDF

Evaluation of Residual Stress of railway wheel (차륜/래일 접촉에 의한 차륜의 잔류응력 평가)

  • Seo Jung-Won;Goo Byeung-Choon;Chung Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.668-673
    • /
    • 2003
  • A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Damages of railway wheel are a spalling by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact. Distributions of residual stress vary according to a magnitude of wheel load, a magnitude of friction when acceleration and deceleration. The objective of this paper is to estimate the influence of wheel motion on the residual stress distribution in the vicinity of the running surface.

  • PDF

Evaluation of Residual Stress of railway wheel by rolling contact (차륜/레일 접촉에 의한 차륜의 잔류응력 평가)

  • Seo, Jung-Won;Goo, Byenug-Choon;Chung, Heung-Chai
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.142-148
    • /
    • 2003
  • A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact. Distributions of residual stress vary according to a magnitude of wheel load, a magnitude of friction when acceleration and deceleration. The objective of this paper is to estimate the influence of wheel motion on the residual stress distribution in the vicinity of the running surface.

Longitudinal Motion Planning of Autonomous Vehicle for Pedestrian Collision Avoidance (보행자 충돌 회피를 위한 자율주행 차량의 종방향 거동 계획)

  • Kim, Yujin;Moon, Jongsik;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2019
  • This paper presents an autonomous acceleration planning algorithm for pedestrian collision avoidance at urban. Various scenarios between pedestrians and a vehicle are designed to maneuver the planning algorithm. To simulate the scenarios, we analyze pedestrian's behavior and identify limitations of fusion sensors, lidar and vision camera. Acceleration is optimally determined by considering TTC (Time To Collision) and pedestrian's intention. Pedestrian's crossing intention is estimated for quick control decision to minimize full-braking situation, based on their velocity and position change. Feasibility of the proposed algorithm is verified by simulations using Carsim and Simulink, and comparisons with actual driving data.