• Title/Summary/Keyword: Brake factor

Search Result 85, Processing Time 0.03 seconds

A Study on the Characteristics of Intake Port Flow and Performance with Swirl Ratio Variance in a Turbocharged D.I. Diesel Engine (과급 디젤엔진에서 선회비 변경에 따른 흡기 포트유동 및 엔진성능 특성에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1185-1194
    • /
    • 2000
  • The characteristics of intake port flow and engine performance with swirl ratio variance in a turbocharged D.I. diesel engine were studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to satisfy performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer, NOx and smoke were measured by gas analyzer and smoke meter. The results of steady flow test are as follows; as the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. Also we realized that there is a trade-off that the increase of swirl ratio decreases mean flow coefficient and increases the Gulf factor. And the optimum parameters to meet performance and emission through engine test are as follows; the swirl ratio 2.43, injection timing BTDC 13oCA and compression ratio 15.5.

Time-variety Characteristics Analysis of Squeal Noise due to Proposed Wear Model and Experimental Verification (제안된 마모 모델에 따른 스퀼소음의 시변특성 해석과 실험적 검증)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Wook;Boo, Kwang-Seok;Kim, Heung-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.89-90
    • /
    • 2008
  • This paper studies the effect of pad at initial stage and wear during braking on the dynamic contact pressure distribution. Wear is influenced by variable factor (contact pressure, sliding speed, radius, temperature) during dynamic braking and variation in contact pressure distribution. Many researchers have conducted complex eigenvalue analysis considering wear characteristic with Lim and Ashby wear map. The conventional analysis method is assumed the pad has smooth and flat surfaces. The purpose of this paper is to validate that wear rate induced by braking is considered for the precise squeal prediction. After obtaining pad wear from experiment, it is incorporated with FE model of brake system. Finally, the comparisons in fugitive nature of squeal will be carried out between the complex eigenvalue analysis and noise dynamometer experiment.

  • PDF

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

A Study of BRT System to Analyze Driving Skill (운전 숙련도 분석을 위한 BRT 시스템에 대한 연구)

  • Jeon, Jong-Oh;Park, Seong-Mo;Won, Yong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • In modem society, car are the most important transportation. Thereby, car accidents has been increasing steadily. The driver is the biggest factor of car accident. Therefor, various studies about driver (reaction time, mentality, physiological signal, age, pattern of drive) are underway. In this paper, we design a embedded system for measuring the reaction time by driving skill. The proposed system is composed of measuring brake module, OBD-2 scanner and bluetooth transmission module. Also, we implement GUI program to analyze experiment result and database to store results. Though our proposed system, we can analyze driving skill.

A Study Temperature of Break Disc using Two-way Layout (이원 배치법을 이용한 브레이크 디스크의 온도에 관한 연구)

  • Ryu, Mi-Ra;Choi, Ji-Woong;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.94-99
    • /
    • 2012
  • Due to economic growth, the number of cars has grown rapidly and consequently traffic accidents have grown in direct ratio. This reminds us that braking device of a vehicle is an important factor to prevent traffic accidents. Aim these researches to speed and lighten the braking system of vehicles, to lengthen its durability and to shorten the stopping distance. However, it is still difficult to analyze quantitatively and clearly the reason and solution for abnormal wear of disc and pad or judder in flywheel mode. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum temperature by two-way layout. The results shown that coefficient of determination has a fine reliability over 92.57% and temperature is made by two-way layout.

Study on Reliability of New Digital Tachograph for Traffic Accident Investigation and Reconstruction (교통사고 조사 및 재현에서 신형 전자식운행기록계의 신뢰성에 관한 연구)

  • Park, Jongjin;Joh, Geonwoo;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.615-622
    • /
    • 2015
  • Recently Digital-TachoGraph(DTG) was mounted mandatorily in commercial vehicles(Taxi, Bus, etc.). DTG records accurate and detailed information of the running state of vehicles related to traffic accident, such as Time, Distance, Velocity, RPM, Brake ON/OFF, GPS, Azimuth, Acceleration. Thus those standardized data can play an important role in traffic accident investigation and reconstruction. To develope the accurate and objective method using the DTG data for the reconstruction of traffic accident, we had conducted several tests such as driving test, high speed circuit test, braking test, slalom test at Korea Automobile Testing & Research Institute(KATRI), and collision test at Korea Automobile insurance repair Research and Training center(KART) with the vehicle equipped with several DTG. Development of the program which enables the reading and analysis of the DTG data was followed. In the experiments, we have found velocity error, RPM error, brake signal error and azimuth error in several products, and also non-continuous event data. The cause of these errors was deduced to be related to the correction factor, the durability of electronic parts and the algorithm.

Hydraulic Control Characteristics of the ABS for an Automotive (자동차 미끄럼방지 제동장치의 유압 제어 특성)

  • Kim, Byeong-Woo;Park, Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • For the purpose of optimal control of anti-lock brake system, precise dynamic characteristics analysis of the hydraulic modulator, especially solenoid valve is necessary. However, most of researches so law have dealt with dynamic characteristic analysis of valve itself and the results have been restrictive to apply on the actual ABS modulator, where hydraulic pressure is acting. In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed quantitatively and performance improvement methods have been suggested varying the design factor. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized criteria for the optimal control of anti-lock brake system.

  • PDF

Powering Performance Prediction of Low-Speed Full Ships and Container Carriers Using Statistical Approach (통계적 접근 방법을 이용한 저속비대선 및 컨테이너선의 동력 성능 추정)

  • Kim, Yoo-Chul;Kim, Gun-Do;Kim, Myung-Soo;Hwang, Seung-Hyun;Kim, Kwang-Soo;Yeon, Sung-Mo;Lee, Young-Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • In this study, we introduce the prediction of brake power for low-speed full ships and container carriers using the linear regression and a machine learning approach. The residual resistance coefficient, wake fraction coefficient, and thrust deduction factor are predicted by regression models using the main dimensions of ship and propeller. The brake power of a ship can be calculated by these coefficients according to the 1978 ITTC performance prediction method. The mean absolute error of the predicted power was under 7%. As a result of several validation cases, it was confirmed that the machine learning model showed slightly better results than linear regression.

Analysis of Braking Response Time for Driving Take Based on Tri-axial Accelerometer

  • Shin, Hwa-Kyung;Lee, Ho-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.59-63
    • /
    • 2010
  • Purpose: Driving a car is an essential component of daily life. For safe driving, each driver must perceive sensory information and respond rapidly and accurately. Brake response time (BRT) is a particularly important factor in the total stopping distance of a vehicle, and therefore is an important factor in traffic accident prevention research. The purpose of the current study was (1) to compare accelerometer. BRTs analyzed by three different methods and (2) to investigate possible correlations between accelerometer-BRTs and foot switch-BRTs, which are measured method using a foot switch. Methods: Eighteen healthy subjects participated in this study. BRT was measured with either a tri-axial accelerometer or a footswitch. BRT with a tri-axial accelerometer was analyzed using three methods: maximum acceleration time, geometrical center, and center of maximum and minimum acceleration values. Results: Both foot switch-BRTs and accelerometer-BRTs were delayed. ANOVA for accelerometer BRTs yielded significant main effects for axis and analysis, while the interaction effect between axis and analysis was not significant. Calculating the Pearson correlation between accelerometer-BRT and foot switch-BRT, we found that maximum acceleration time and center of maximum and minimum acceleration values were significantly correlated with foot switch-BRT (p<0.05). The X axis of the geometrical center was significantly correlated with foot switch-BRTs (p<0.05), but Y and Z axes were not (p>0.05). Conclusion: These findings suggest that the maximum acceleration time and the center of maximum and minimum acceleration value are significantly correlated with foot switch-BRTs.

A Study on the Impronement on the Response of Solenoid-Flow control type ABS Modulator (솔레이노-유량제어 방식 ABS의 응답성 향상에 관한 연구)

  • 송창섭;김형태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.569-572
    • /
    • 1995
  • In this study, a hydraulic modulator of solenoid-flow type ABS, the master sylinder, and the wheel cylinder are modeled and simulated for increasing pressure characteristics of the brake. Response can be predicted by external force of the the master sylinder and pulses to the solenoid valve as input. For a demonstration of simulation result, experiment is done under the same condition as simulation condition after experimental apparatus of 1/4 car model is constructed. When factors of flow control valve are changed, the effect of each factor to response, how to improve response, and the most critical factors are considered from simulated result of time constant.

  • PDF