• Title/Summary/Keyword: Brake dynamometer

Search Result 114, Processing Time 0.023 seconds

The study on the influence of contact pressure distribution on brake squeal analysis (브레이크 스퀼 해석에서 접촉압력분포의 영향에 관한 연구)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Uk;Boo, Kwang-Seok;Kim, Heung-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1120-1124
    • /
    • 2007
  • Recently in the automotive brake industry brake squeal noise has become one of the top automotive quality warranty issues. The contact pressure is used to predict friction coupling in the brake squeal analysis. The formulation of friction coupling has performed by nonlinear static analysis prior to the complex eigenvalue analysis. This paper proposes a validation methodology of squeal analysis using modal testing and contact analysis and examines the effect of predicted contact pressure that leads to the discrepancy between unstable complex mode and squeal frequency. This studies compose a three step validation process : examining the modal characteristics of component and assembly loaded contact pressure using modal testing and FEM analysis and verifying the contact pressure distribution using nonlinear static analysis and experiment. Finally, the unstable modes from complex eigenvalue analysis and realistic squeal frequency from the noise dynamometer are investigated.

  • PDF

An Experimental Study for Machined Patterns of Friction Surface on Disc Brake Rotor in Performance Aspect (디스크 브레이크 로터 마찰면 가공 형태에 따른 성능 변화 연구)

  • Jung, Taeksu;Cha, Bawoo;Hong, Yunhwa;Kim, Cheongmin;Hong, Younghoon;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2016
  • Cross-drilling and slotting on the frictional surface of a brake rotor are methods used for improving the performance of the brake system. These shapes have particular advantages, such as the shaving effect of a slotted shape, which maintains a clean pad-to-rotor contact surface, and the venting effect of a drilled shape, which provides passageways for the gas to escape. In order to understand the effect of the machined pattern on the brake performance aspect, an experimental method is adopted along with the dynamometer test. The cross-drilled rotor, slotted rotor, and mixed pattern rotor with cross-drilling and slotting machining are prepared and tested in terms of friction coefficient, temperature, braking torque, and noise.

Parameter Analysis of Rotor Shape Modification for Reduction of Squeal Noise (브레이크의 스퀼 저감을 위한 로터 형상변경 파라메터 해석)

  • Lee, Hyun-Young;Oh, Jae-Eung;Cha, Byeong-Gyu;Joe, Yong-Goo;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.820-825
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, finite element parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and simulation results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric rotor simulation. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Tribological Properties of Carbonaceous Ingredients such as Natural Graphite, Artificial Graphite, and Cokes in Automotive Brake Friction Materials

  • Kim, Yoon-Jun;Lee, Kang-Sun;Park, Sung-Bin;Jang, Ho
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.43-47
    • /
    • 2009
  • Influences of carbonaceous ingredient as a solid lubricant in automotive friction materials on friction properties were studied. Three types of carbonaceous ingredients such as natural graphite, artificial graphite, and cokes were mixed using a constrained mixture design. A 1/5 scale brake dynamometer was used to obtain tribological properties. Results showed that cokes substantially increased the friction coefficient, and natural graphite effectively reduced stick-slip phenomena. This significant difference was attributed to the formation of the friction film on the brake pad which was shown to be strongly dependent on the graphite types. The different crystal structures of the carbonaceous solid lubricants played a significant role in the formation of friction film at the interface.

The Study on the Influence of Pad Wear on Brake Squeal Analysis (브레이크 스퀼 해석에서 패드 마모의 영향에 관한 연구)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Wook;Boo, Kwang-Seok;Kim, Heung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.930-936
    • /
    • 2008
  • This paper studies the effect of pad at initial stage and wear during braking on the dynamic contact pressure distribution. Wear is influenced by variable factor (contact pressure, sliding speed, radius, temperature) during dynamic braking and variation in contact pressure distribution. Many researchers have conducted complex eigenvalue analysis considering wear characteristic with Lim and Ashby wear map. The conventional analysis method is assumed the pad has smooth and flat surfaces. The purpose of this paper is to validate that wear rate induced by braking is considered for the precise squeal prediction. After obtaining pad wear from experiment, it is incorporated with FE model of brake system. Finally, the comparisons in fugitive nature of squeal will be carried out between the complex eigenvalue analysis and noise dynamometer experiment.

A Study on the Performance of Friction Materials using Reduced Iron (환원분철을 이용한 마찰재의 성능에 관한 연구)

  • Kim, Byoung-Sam;Mun, Sang-Don;Chi, Chang-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.593-598
    • /
    • 2008
  • It was made a friction material of various kinds by adding 10%, 20% and 30% of reduced iron. It was obtained by a connected-reduced process in a blast furnace sludge and oxidized iron, instead of $BaSO_4$, which is already a used inorganic filling material among a component of a brake friction material. This was done by a basic physical property test, a friction performance test to use a brake dynamometer. Moreover, in case of an add in the friction material, instead of using $BaSO_4$, the more expensive filling material, the reduced iron was also better because it has an excellent a friction property of an exothermic temperature, wear, etc. was 10%. At G1 and G3 specimens, a shear strength and a bonding strength of the friction material was decreased to be able to increase an amount of the blast furnace sludge and the reduced iron, but an application of all friction materials appeared enough strength.

Tribological properties of the brake friction materials without environmentally regulated ingredients (친환경 규제 원료를 제거한 마찰재의 마찰 특성에 관한 연구)

  • Lim, Se-Eun;Lee, Wan-Gyu;Shin, Min-Wook;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.246-253
    • /
    • 2010
  • Friction characteristics of the brake friction materials without environmentally regulated ingredients were examined to find their role in the brake performance. Five friction materials were produced based on a nearcommercial formulation by changing the relative amount of potentially hazardous ingredients to health and environment, such as $Sb_2S_3$, potassium titanate, and brass fiber. Tribological properties of the friction materials were obtained using a scale dynamometer and Krauss type tribometer. Results showed that the excluded three ingredients played important synergetic effects on tribological properties in terms of fade resistance, wear resistance and friction effectiveness. In particular, brass fibers played important roles in the friction stability by providing excellent thermal diffusivity at the friction interface. Potassium titanate whiskers showed excellent fade resistance and wear resistance compared to the substituted barite. Antimony trisulfide, on the other hand, showed little effect on the high temperature fade resistance and wear resistance, while it increased friction effectiveness at moderate temperatures. The friction materials without the three ingredients showed severe fade, indicating antisynergy effects.

Tribological Properties of C-SiC Brake Discs with Surface Modifications (세라믹 디스크의 표면 개질에 따른 마찰 마모 특성)

  • Jang, Ho;Kim, Ki-Jung;Hwang, Hee-Jeong;Kim, Seong-Jin;Park, Hong-Sik
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.163-169
    • /
    • 2008
  • Tribological properties of ceramic brake discs were investigated using a commercial friction material. The discs were manufactured by liquid silicon infiltration (LSI) into a C-C preform. The disc surface was modified by two different methods, producing sliding surfaces with chopped carbon fibers and carbon felt. In addition, the composition of the surface was also changed. Friction characteristics of the discs were examined using a 1/5 scale dynamometer. Results showed that the type and composition of the disc surface significantly affected the level of braking effectiveness and high temperature brake performance. The discs with felt surfaces showed higher friction levels than those with chopped fiber surfaces and SiC tended to increase the friction level while C lowered the friction coefficient. The ceramic disc was more sensitive to the deceleration rate than gray iron, showing high speed sensitivity.

Study of Tribological Characteristics Between Metallic friction materials and Brake Disk (금속계 마찰재와 제동디스크 간의 마찰특성 연구)

  • Kim, Sang-Ho;Park, Hyung-Chul;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2080-2093
    • /
    • 2008
  • Disk brake system take charge of maximum braking energy among the mechanical brake systems for high speed train. For this reason, Metallic friction materials and heat resistant steel disk is adopted at disk brake system for high speed train. It was investigated tribological characteristics(friction coefficient, friction stability, wear rate and braking temperature) between some kinds of metallic friction materials and heat resistant steel disk. Cu-based friction material for high speed train have suitable tribological characteristics.

  • PDF

HWILS Implementation of TCS Control System Based on Throttle Adjustment Approach (스로틀 조절 방식에 기초한 TCS 슬립 제어 시스템의 HWILS 구현)

  • 송재복;홍동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • Traction control systems(TCS) improve vehicle acceleration performance and stability, particularly on slippery roads through engine torque and/or brake torque control. This research mainly deals with the engine control algorithm based on adjustment of the engine throttle valve opening. Hardware-in-the-loop simulation(HWILS) is carried out where the actual hardware is used for the engine/automatic transmission and TCS controller, while various vehicle dynamics are simulated on real-time basis. Also, use of the dynamometer is made in order to implement the tractive force that a road applies to the tire. Although some restrictions are imposed mainly due to the capability of the synamometer, simplified HWILS results show that the slip control algorithm can improve the vehicle acceleration performance for low-friction roads.

  • PDF