• Title/Summary/Keyword: Brain-computer interfacing

Search Result 8, Processing Time 0.019 seconds

Brain Computer Interfacing: A Multi-Modal Perspective

  • Fazli, Siamac;Lee, Seong-Whan
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2013
  • Multi-modal techniques have received increasing interest in the neuroscientific and brain computer interface (BCI) communities in recent times. Two aspects of multi-modal imaging for BCI will be reviewed. First, the use of recordings of multiple subjects to help find subject-independent BCI classifiers is considered. Then, multi-modal neuroimaging methods involving combined electroencephalogram and near-infrared spectroscopy measurements are discussed, which can help achieve enhanced and robust BCI performance.

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.

A Brain-Computer Interface Based Human-Robot Interaction Platform (Brain-Computer Interface 기반 인간-로봇상호작용 플랫폼)

  • Yoon, Joongsun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7508-7512
    • /
    • 2015
  • We propose a brain-machine interface(BMI) based human-robot interaction(HRI) platform which operates machines by interfacing intentions by capturing brain waves. Platform consists of capture, processing/mapping, and action parts. A noninvasive brain wave sensor, PC, and robot-avatar/LED/motor are selected as capture, processing/mapping, and action part(s), respectively. Various investigations to ensure the relations between intentions and brainwave sensing have been explored. Case studies-an interactive game, on-off controls of LED(s), and motor control(s) are presented to show the design and implementation process of new BMI based HRI platform.

Direction control using signals originating from facial muscle constructions (안면근에 의해 발생되는 신호를 이용한 방향 제어)

  • Yang, Eun-Joo;Kim, Eung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.427-432
    • /
    • 2003
  • EEG is an electrical signal, which occurs during information processing in the brain. These EEG signals have been used clinically, but nowadays we ate mainly studying Brain-Computer Interface (BCI) such as interfacing with a computer through the EEG, controlling the machine through the EEG. The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. This research makes the controlling system of directions with the artifact that are generated from the subject s will, for the purpose of controlling the machine correctly and reliably We made the system like this. First, we select the particular artifact among the EEG mixed with artifact, then, recognize and classify the signals pattern, then, change the signals to general signals that can be used by the controlling system of directions.

A Research on EEG Synchronization of Movement Cognition for Brain Computer Interface (뇌 컴퓨터 인터페이스를 위한 뇌파와 동작 인지와의 동기화에 관한 연구)

  • Whang, Min-Cheol;Kim, Kyu-Tae;Goh, Sang-Tae;Jeong, Byung-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.167-171
    • /
    • 2007
  • Brain computer interface is the technology of interface for next generation. Recently, user intention has been tried to be recognized for interfacing a computer. EEG plays important role in developing practical application in this area. Much research has focused on extracting EEG commander generated by human movement. ERD/ERS has generally accepted as important EEG parameters for prediction of human movement. However, There has been difference between initial movement indicated by ERD/ERS and real movement. Therefore, this study was to determine the time differences for brain interface by ERD/ERS. Five university students performed ten repetitive movements. ERD/ERS was determined according to movement execution and the significant pattern showed the difference between movement execution and movement indication of ERD/ERS.

Mind control interface technology for the military control instrument (군사용 제어기기를 위한 마인드 컨트롤 인터페이스 기술)

  • Kim, Eung-Su
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.249-267
    • /
    • 2003
  • EEG is an electrical signal, which occurs during information processing in the brain. These EEG signals have been used clinically, but nowadays we are mainly studying Brain-Computer Interface (BCI) such as interfacing with a computer through the EEG, controlling the machine through the EEG. The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. This research makes the controlling system of directions with the artifact that are generated from the subject's will, for the purpose of controlling the machine correctly and reliably. We made the system like this. First, we select the particular artifact among the EEG mixed with artifact, then, recognize and classify the signals' pattern, then, change the signals to general signals that can be used by the controlling system of directions.

  • PDF

Electroencephalography-based imagined speech recognition using deep long short-term memory network

  • Agarwal, Prabhakar;Kumar, Sandeep
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.672-685
    • /
    • 2022
  • This article proposes a subject-independent application of brain-computer interfacing (BCI). A 32-channel Electroencephalography (EEG) device is used to measure imagined speech (SI) of four words (sos, stop, medicine, washroom) and one phrase (come-here) across 13 subjects. A deep long short-term memory (LSTM) network has been adopted to recognize the above signals in seven EEG frequency bands individually in nine major regions of the brain. The results show a maximum accuracy of 73.56% and a network prediction time (NPT) of 0.14 s which are superior to other state-of-the-art techniques in the literature. Our analysis reveals that the alpha band can recognize SI better than other EEG frequencies. To reinforce our findings, the above work has been compared by models based on the gated recurrent unit (GRU), convolutional neural network (CNN), and six conventional classifiers. The results show that the LSTM model has 46.86% more average accuracy in the alpha band and 74.54% less average NPT than CNN. The maximum accuracy of GRU was 8.34% less than the LSTM network. Deep networks performed better than traditional classifiers.

Feature extraction and Classification of EEG for BCI system

  • Kim, Eung-Soo;Cho, Han-Bum;Yang, Eun-Joo;Eum, Tae-Wan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.260-263
    • /
    • 2003
  • EEC is an electrical signal, which occurs during information processing in the brain. These EEG signals has been used clinically, but nowadays we are mainly studying Brain-Computer Interface(BCI) such as interfacing with a computer through the EEG controlling the machine through the EEG The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. A BCI has to perform two tasks, the parameter estimation task, which attemps to describe the properties of the EEG signal and the classification task, which separates the different EEC patterns based on the estimated parameters. First, we have to do parameter estimation of EEG to embody BCI system. It is important to improve performance of classifier, But, It is not easy to do parameter estimation by reason of EEG is sensitivity and undergo various influences. Therefore, this research should do parameter estimation and classification of the EEG to use various analysis algorithm.

  • PDF