• Title/Summary/Keyword: Brain mechanisms

Search Result 489, Processing Time 0.023 seconds

Neurovascular Mechanisms in Stroke, Neurodegeneration and Recovery

  • Lo, Eng-H.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.223-229
    • /
    • 2006
  • The emerging concept of the 'neurovascular unit' may enable a powerful paradigm shift for neuroscience. Instead of a pure focus on the 'neurobiology' of disease, an opportunity now exists to return to a more integrative approach. The neurovascular unit emphasizes that signaling between vascular and neuronal compartments comprise the basis for both function and dysfunction in brain. Hence, brain disorders are not just due to death of neurons, but instead manifested as cell signaling perturbations at the neurovascular interface. In this mini-review, we will examine 3 examples of this hypothesis: neurovascular mechanisms involved in the thrombolytic therapy of stroke, the crosstalk between neurogenesis and angiogenesis, and the link between vascular dysfunction and amyloid pathology in Alzheimer's disease. An understanding of cell-cell and cell-matrix signaling at the neurovascular interface may yield new approaches for targeting CNS disorders.

3D Dual-Fusion Attention Network for Brain Tumor Segmentation (뇌종양 분할을 위한 3D 이중 융합 주의 네트워크)

  • Hoang-Son Vo-Thanh;Tram-Tran Nguyen Quynh;Nhu-Tai Do;Soo-Hyung Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.496-498
    • /
    • 2023
  • Brain tumor segmentation problem has challenges in the tumor diversity of location, imbalance, and morphology. Attention mechanisms have recently been used widely to tackle medical segmentation problems efficiently by focusing on essential regions. In contrast, the fusion approaches enhance performance by merging mutual benefits from many models. In this study, we proposed a 3D dual fusion attention network to combine the advantages of fusion approaches and attention mechanisms by residual self-attention and local blocks. Compared to fusion approaches and related works, our proposed method has shown promising results on the BraTS 2018 dataset.

fMRI evidence of compensatory mechanisms during a verbal working memory task in individuals with alcohol use disorders (알코올 사용 장애자의 언어 작업 기억과 관련된 뇌의 보상 기전: fMRI 연구)

  • Park, Mi-Suk;Son, Seon-Ju;Park, Ji-Eun;Eum, Yeong-Ji;Kim, Suk-Hui;Yu, In-Gyu;Son, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.101-104
    • /
    • 2009
  • This study investigated compensatory mechanisms in the brain during a verbal working memory task among people with Alcohol Use Disorders (AUD). A total of 21 college male students participated in the study: eleven AUD participants and 10 normal controls. Study participants were asked to complete the Korean version of the Wechsler Adult Intelligence Scale-III (K-WAIS-III) prior to the fMRI experiment. Verbal 0-back and 2-back tasks were used to assess brain activities of the participants' verbal working memory. Brain scanning was performed on Siemens SONATA 1.5T Scanner while participants were performing the 0-back and 2-back tasks. Within the AUD group, participants with greater dependency to alcohol (based on DSM-IV criteria) in the past 1 year showed lower mean score on the 'Similarities' of the K-WAIS-III (r=-0.63, p<0.05, N=11). The more participants experienced alcohol withdrawal symptoms in the past 1 year, the lower the score they received on the K-WAIS-III 'Picture Arrangement' (r=-0.69, p<0.05, n=11). The fMRI regression results showed that individuals who present greater degree of alcohol dependency symptoms are likely to show greater brain activation in the bilateral middle frontal gyri (BA 9) during the verbal working memory task. The degree of alcohol withdrawal symptoms were associated with increased brain activation in the left superior and middle frontal gyri (BA8), left precentral gyrus (BA 6), and left inferior parietal lobule (BA 40). The study findings showed that the degree of alcohol abuse/dependence and withdrawal symptoms were associated with decreased cognitive function and increased activations in brain regions particularly important for abstract reasoning (BA 9), central executive (BA 9), or spatial storage (BA 40) during a working memory task. Therefore, these results could support previous studies suggesting that the neural system of people with ADD may adopt a brain compensatory mechanism to maintain normal level of cognitive functions.

  • PDF

Neurophysiological Evaluation of the Motor System Using Transcranial Magnetic Stimulation (뇌자기자극을 이용한 운동신경계의 신경생리학적 평가)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Transcranial magnetic stimulation (TMS) is a non-invasive tool used to study aspects of human brain physiology, including motor function and the pathophysiology of various brain disorders. A brief electric current passed through a magnetic coil produces a high-intensity magnetic field, which can excite or inhibit the cerebral cortex. Although various brain regions can be evaluated by TMS, most studies have focused on the motor cortex where motor evoked potentials (MEPs) are produced. Single-pulse and paired-pulse TMS can be used to measure the excitability of the motor cortex via various parameters, while repetitive TMS induces cortical plasticity via long-term potentiation or long-term depression-like mechanisms. Therefore, TMS is useful in the evaluation of physiological mechanisms of various neurological diseases, including movement disorders and epilepsy. In addition, it has diagnostic utility in spinal cord diseases, amyotrophic lateral sclerosis and demyelinating diseases. The therapeutic effects of repetitive TMS on stroke, Parkinson disease and focal hand dystonia are limited since the duration and clinical benefits seem to be temporary. New TMS techniques, which may improve clinical utility, are being developed to enhance clinical utilities in various neurological diseases.

Genetical and Physiological Mechanisms of Adult Diapause in Insects

  • Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.34 no.1
    • /
    • pp.20-32
    • /
    • 1995
  • Adult diapause in insects is characterized by suppression of reproductive development. It is induced by environmental cues such as photoperiod, temperature, food availability, and other conditions Diapause-inducing environment is recognized and analyzed by the brain of the insects. The interpreted information is conveyed via endocrine system to target tissues such as ovaries, fat body, and other tissues. From this signal hierarchy of a brain-endocrine-target tissue axis, several factors are involved to express a diapause trait in a quantitative mode, even though the insects show a binomial phenotye between being in diapause or not. Recent works estimated that the number of the factors is relatively small by a series of crossing trials between high and low diapause lines. Heritability of the diapause is quite high (ca. 70%) in some species. Epistasis, sex-linkage, pleiotropism, and other nongenetic components also affect diapause inheritance. Most physiological studies have been focused on control mechanisms of the juvenile hormone (JH) synthesis in corpora allata (CA) because JH level in hemolymph of teneral adults is critical to decide a later developmental mode. Allatostatin, an antagonizer of JH synthesis, has been believed to be a potent brain message to CA for adult diapause induction.

  • PDF

Interplay between autophagy and programmed cell death in mammalian neural stem cells

  • Chung, Kyung Min;Yu, Seong-Woon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.383-390
    • /
    • 2013
  • Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies.

Human Capacity Issues Along the STEM Pipeline

  • Melkers, Julia
    • STI Policy Review
    • /
    • v.1 no.2
    • /
    • pp.1-18
    • /
    • 2010
  • The development and maintenance of human capacity in economies is critical to long term competitiveness, but also for the overall health and environment of regions. Yet, human science and technology-based capacity is multidimensional and has interrelated characteristics which present certain policy challenges. This paper addresses a range of issues specific to a discussion on human capacity in S&T. First, the paper emphasizes the importance of acknowledging the complexity of human capacity issues and how they evolve along the STEM (science, technology, engineering, and mathematics) pipeline. The pipeline is an often used reference to describe the training and development in STEM disciplines, from early childhood education, to more advanced training, and finally to professional collaboration and interaction and serves as a useful organizing framework for the discussion of capacity along the career evolution process. Second, the paper offers an organizing framework for discussion of policy mechanisms that have been developed to address issues and gaps that occur along this STEM pipeline. Specifically, it contrasts the traditional mechanisms of building human capacity in STEM areas with newer "gap filling" and integrated approached to addressed human capacity disparities and priorities. Third, the paper addresses core challenges in human capacity in STEM, including the education and training, participation of women and underrepresented groups, brain drain/brain circulation issues, and the globalization of science. The paper concludes with a discussion of policy implication for the development of human capacity.

Ultradian Rhythms in the Hypothalamic Arcuate Nucleus Kisspeptin Neurons and Developmental Processes

  • Kim, Doyeon;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.600-606
    • /
    • 2020
  • Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.

Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain

  • Park, Chan-Woo;Lee, Sung-Min;Yoon, Ki-Jun
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.551-564
    • /
    • 2020
  • Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.

Ependymal Cells Require Anks1a for Their Proper Development

  • Park, Sunjung;Lee, Haeryung;Lee, Jiyeon;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • Ependymal cells constitute the multi-ciliated epithelium, which lines the brain ventricular lumen. Although ependymal cells originate from radial glial cells in the perinatal rodent brain, the exact mechanisms underlying the full differentiation of ependymal cells are poorly understood. In this report, we present evidence that the Anks1a phosphotyrosine binding domain (PTB) adaptor is required for the proper development of ependymal cells in the rodent postnatal brain. Anks1a gene trap targeted LacZ reporter analysis revealed that Anks1a is expressed prominently in the ventricular region of the early postnatal brain and that its expression is restricted to mature ependymal cells during postnatal brain development. In addition, Anks1a-deficient ependymal cells were shown to possess type B cell characteristics, suggesting that ependymal cells require Anks1a in order to be fully differentiated. Finally, Anks1a overexpression in the lateral wall of the neonatal brain resulted in an increase in the number of ependymal cells during postnatal brain development. Altogether, our results suggest that ependymal cells require Anks1a PTB adaptor for their proper development.