• Title/Summary/Keyword: Brain mechanisms

Search Result 489, Processing Time 0.027 seconds

Repetitive transcranial magnetic stimulation for neuropathic pain

  • Kim, Sooyoung;Lee, Eun Kyoung;Sohn, Eunhee
    • Annals of Clinical Neurophysiology
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Noninvasive stimulation of the nervous system for treating chronic neuropathic pain has received attention because of its tolerability and relative efficacy. Repetitive transcranial magnetic stimulation (rTMS) is a representative method of noninvasive brain stimulation. Evidence-based guidelines on therapeutic use of rTMS have been proposed recently for several neurological diseases. These guidelines recommend treating neuropathic pain by applying high-frequency (≥ 5 Hz) rTMS to the primary motor cortex contralateral to the painful side. This review summarizes the mechanisms and guidelines of rTMS for treating neuropathic pain, and proposes directions for future research.

REVIEW OF DIFFUSION MODELS: THEORY AND APPLICATIONS

  • HYUNGJIN CHUNG;HYELIN NAM;JONG CHUL YE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • This review comprehensively explores the evolution, theoretical underpinnings, variations, and applications of diffusion models. Originating as a generative framework, diffusion models have rapidly ascended to the forefront of machine learning research, owing to their exceptional capability, stability, and versatility. We dissect the core principles driving diffusion processes, elucidating their mathematical foundations and the mechanisms by which they iteratively refine noise into structured data. We highlight pivotal advancements and the integration of auxiliary techniques that have significantly enhanced their efficiency and stability. Variants such as bridges that broaden the applicability of diffusion models to wider domains are introduced. We put special emphasis on the ability of diffusion models as a crucial foundation model, with modalities ranging from image, 3D assets, and video. The role of diffusion models as a general foundation model leads to its versatility in many of the downstream tasks such as solving inverse problems and image editing. Through this review, we aim to provide a thorough and accessible compendium for both newcomers and seasoned researchers in the field.

Understanding the Unfolded Protein Response (UPR) Pathway: Insights into Neuropsychiatric Disorders and Therapeutic Potentials

  • Pitna Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.183-191
    • /
    • 2024
  • The Unfolded Protein Response (UPR) serves as a critical cellular mechanism dedicated to maintaining protein homeostasis, primarily within the endoplasmic reticulum (ER). This pathway diligently responds to a variety of intracellular indicators of ER stress with the objective of reinstating balance by diminishing the accumulation of unfolded proteins, amplifying the ER's folding capacity, and eliminating slow-folding proteins. Prolonged ER stress and UPR irregularities have been linked to a range of neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and schizophrenia. This review offers a comprehensive overview of the UPR pathway, delineating its activation mechanisms and its role in the pathophysiology of neuropsychiatric disorders. It highlights the intricate interplay within the UPR and its profound influence on brain function, synaptic perturbations, and neural developmental processes. Additionally, it explores evolving therapeutic strategies targeting the UPR within the context of these disorders, underscoring the necessity for precision and further research to effective treatments. The research findings presented in this work underscore the promising potential of UPR-focused therapeutic approaches to address the complex landscape of neuropsychiatric disorders, giving rise to optimism for improving outcomes for individuals facing these complex conditions.

Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors

  • Hyungsup Kim;Minwoo Kim;Yongwoo Jang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.192-204
    • /
    • 2024
  • Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.

The Effects of Polygala Tenuifolia DM Fraction on CT105-injuried Neuronal Cells (원지 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향)

  • Lee Sang Won;Kim Sang Ho;Kim Tae Heon;Kang Hyung Won;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.507-516
    • /
    • 2004
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the commom disease in public health service. Although a variety of oriental presciptions in study POD(Polygala tenuifolia extracted from dichlorometan) have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet fully elucidated. It has been widely believed that AP peptide divided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that CT105, carboxy terminal 105 aminoacids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. SK-N-SH cells expressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase contrast microscope and NO formation in the culture media, the CT105-induced cell death was significantly inhibited by POD. In addition, AD is one of brain degeneration disease. So We studied on herbal medicine that have a relation of brain degeneration. From old times, In Oriental Medicine, PO water extract has been used for disease in relation to brain degeneration. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by POD. Findings from our experiments have shown that POD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of POD(>50 ㎍/㎖ for 12 hours) partially prevented CT(105)-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. POD(>50 ㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In POD group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of Neuroblastoma cells by CT105 expression is promoted. Decrease of memory induced by injection of scopolamin into rat was also attenuted by POD, based on passive avoidance test. Taken together, POD exhibited inhibition of CT105-induced apoptotic cell death. POD was found to reduce the activity of AchE and induced about the CA1 in rat hippocampus. Base on these findings, POD may be beneficial for the treatment of AD.

The Experimental Study of Sunkihwalhyul-Tang against Inhibitive Effects on the Brain Ischemia (순기활혈탕(順氣活血湯)의 뇌허혈(腦虛血) 억제효과(抑制效果)에 관한 실험적(實驗的) 연구(硏究))

  • Hong, Seok;Ann, Jeong-Jo;Jeong, Sang-Yoon;Choi, Chang-Won;Jeong, Young-Deuk
    • Herbal Formula Science
    • /
    • v.13 no.1
    • /
    • pp.49-69
    • /
    • 2005
  • This Study was designed to investigate the effect of Sunkihwalhyul -Tang extract(SHT) on the change of cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD) and mean arterial blood pressure(MABP)] in normal and cerebral ischemic rats, and further to determine the mechanisms of action of SHT on hemodynamics. In addition, this study was designed to investigate whether SHT inhibits lactate dehydrog enase(LDH) activity in neuronal cells and cytokines production in serum of cerebral ischemic rats. The results were as follows 1. SHT significantly increased rCBF and PAD in a dose-dependent manner, but MABP was not changed by injecting SHT. These results suggest that SHT significantly increases rCBF by dilating PAD. 2. The SHT-induced increase in rCBF was significantly inhibited by pretreatment with indomethacin(IDN, 1 mg/kg, i.p.), an inhibitor of cyclooxygenase and methylene blue(MTB, $10{\mu}g/kg$, i.p.), an inhibitor of guanylate cyclase. 3. The SHT-induced dilation in PAD was significantly inhibited by pretreatment with IDN and MTB. 4. The SHT-induced some increase in MABP was significantly increased by pretreatment with IDN. These results suggest that the mechanism of action of SBT is mediated by guanylate cyclase. 5. Both rCBF and PAD were significantly and stably increased by SHT(10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. 6. SBH significantly inhibited LDH activity in neuronal cells. These results suggest that SHT prevents the neuronal death. 7. In cytokine production in the senlm drawn from femoral artery 1 hr after middlecerebral arterial occlusion, sample group showed significantly decreased production of IL-1$\beta$ production, decreased production TNF-$\alpha$ and increased Production of IL-10 compared with control group. 8. In cytokine production in the serum drawn femoral artery 1 hr after reperfusion, sample group showed significantly decreased production of IL-1$\beta$ and TNF-$\alpha$ as wellas significantly increased production of IL10 compared with control group. These results suggest that SHT mediated by guanylate cyclase has inhibitive effect on the brain damage by inhibiting LDH activity, IL-1$\beta$ and TNF-$\alpha$ production, and by accelerating IL-10 production. The present author thinks that SHT has an anti-ischemic effects through the improvement of cerebral hemodynamics and inhibitive enects on the brain damage.

  • PDF

Selective and Random Patterning of Programmed Cell Death in Zebrafish Embryonic Development

  • Hwang, Chang-Nam;Kim, Joon;Lee, Sang-Ho
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.118-118
    • /
    • 2002
  • Programmed cell death (PCD) is thought as a well-controlled process by which unwanted cells are selectively eliminated. During the last decade many researches have elucidated molecules and their interactions involved in cell death by using largely in vitro induction of cell death or survival signals in a more defined manner, While these critical information and novel findings provide us with clearer understanding of mechanisms underlying cell death, it does by no means explain how PCD occurs and which cells or tissues are affected during normal embryonic development in vivo. In this study, we used zebrafish to examine whether the PCD is occurring selectively or randomly in developing embryos by whole mount in situ TUNEL analysis with specific markers for neural cells. The result revealed that the degree and distribution of TUNEL staining varied considerably throughout gastrulation stage, and there was also a number of TUNEL-negative embryos. Most of TUNEL-positive cells were scattered randomly throughout the blastoderm. During the gastrulation stage about 75 % of the embryos analyzed exhibited more than 5 TUNEL-positive cells. As the dorsal epiblast begins to thicken rather abruptly near the end of gastrulation, TUNEL-positive cells were mainly located along the dorsal side. Although there were some variations in TUNEL staining during segmentation and pharyngeal stages, TUNEL staining continued to be localized to the central nervous system, and was also detected in the sensory organs, trigeminal ganglions, and the primary sensory neurons. High levels of the cell death in developing brain between 20-somite and prim-6 stages are thought to play a role in the morphogenesis and organization of the brain. At prim-16 stage, cell death is considerably reduced in the brain region. Dying cells are mainly localized to the prospective brain region where ectodermal cells are about to initiate neurogenesis. As development progressed, high levels and more reproducible patterns of cell death were observed in the developing nervous system. Intensive TUNEL staining was restricted to the trigeminal ganglions, the primary sensory neurons, and sensory organs, such as olfactory pits and otic vesicles. Thus, PCD patterning in zebrafish embryos occurs randomly at early stages and becomes restricted to certain region of the embryos. The spatio-temporal pattern of PCD during the early embryonic development in zebrafish will provide basic information for further studies to elucidate genes involved in. regulation of PCD largely unknown in vivo during vertebrate embryogenesis.

  • PDF

The Effects of Water Deprivation on Cerebrospinal Fluid Constituents During Feeding in Sheep

  • Sunagawa, Katsunori;Weisinger, Richard S.;McKinley, Michael J.;Purcell, Brett S.;Thomson, Craig;Burns, Peta L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2001
  • The internal humoral factors in the central regulation of dry feed intake during water deprivation in sheep were investigated by measurement of cerebrospinal fluid (CSF) constituents. Five animals were fed dried alfalfa chaff for 2 hours once a day. Sheep in the water deprivation treatment were deprived of water for 28 hours, while the sheep in the control treatment were given free access to water. During the first hour of the 2 hour feeding period, a rapid reduction in blood volume occured in both treatments (water deprivation and free access to water). The CSF concentrations of Na, Cl and osmolality during the second hour of the 2 hour feeding period in both treatments were greater (p<0.01) than those during the first hour. The drinking behaviors in sheep were concentrated during the second hour of the 2 hour feeding period in periods of free access to water. Water intake during feeding in periods of free access to water was 1110 ml/2 h. The levels of increase in CSF osmolality with feeding during water deprivation were greater (p<0.01) than during periods of free access to water. The changes in CSF osmolality with feeding during water deprivation produced more vigorous thirst sensations in the brain compared to during periods of free access to water. The eating rates for the first hour of the allotted 2 hour feeding period were the same under both treatments. However, the eating rates for the second hour during water deprivation periods decreased significantly (p<0.05) compared to those during periods of free access to water. The decreased eating rates for the second hour during water deprivation may be due to the vigorous thirst sensations produced in the brain. The results suggest that the increase in CSF osmolality with feeding during water deprivation acts as a thirst and satiety factor in brain mechanisms controlling feeding to decrease dry feed intake in water-deprived sheep.

Exercise and Neuroplasticity: Benefits of High Intensity Interval Exercise (운동과 뇌신경가소성: 고강도 인터벌 운동의 효과성 고찰)

  • Hwang, Ji Sun;Kim, Tae Young;Hwang, Moon-Hyon;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.129-139
    • /
    • 2016
  • Exercise increases the expression and interaction of major neurotrophic factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) at both central and peripheral tissues, which contributes to improved brain and neural plasticity and cognitive function. Previous findings have been to understand the effect of light or moderate intensity aerobic exercise on neurotrophic factors and cognitive function, not that of high intensity aerobic exercise. However, recent findings suggest that high intensity interval training is a safe, less time-consuming, efficient way to improve cardiorespiratory fitness and weight control, thus American College of Sport Medicine (ACSM)’s guidelines for exercise prescription for various adult populations also recommend the application of high intensity interval training to promote their overall health. High intensity interval training also enhances the expression of BDNF, IGF-1, and VEGF at the brain and peripheral tissues, which improves cognitive function. Increased frequency of intermittent hypoxia and increased usage of lactate as a supplementary metabolic resource at the brain and neural components are considered a putative physiological mechanism by which high intensity interval training improves neurotrophic factors and cognitive function. Therefore, future studies are required to understand how increased hypoxia and lactate usage leads to the improvement of neurotrophic factors and what the related biological mechanisms are. In addition, by comparing with the iso-caloric moderate continuous exercise, the superiority of high intensity interval training on the expression of neurotrophic factors and cognitive function should be demonstrated by associated future studies.

Acoustic Property and Clinical Mechanism of the Singing Bowl Sound (싱잉볼 소리의 특성 및 임상적인 기전)

  • Kim, Seong Chan;Hong, Geum Na;Choi, Min Joo
    • Journal of Naturopathy
    • /
    • v.11 no.2
    • /
    • pp.143-151
    • /
    • 2022
  • Background: The singing bowl is a bowl-shaped percussion instrument and is used in meditation and healing programs, but the mechanism of its clinical effects is unclear. Purpose: In this paper, we reviewed the peculiar acoustic property of the singing bowl sound and discussed on physical mechanisms of the clinical effects of the singing bowl sound. Methods: We studied the literature by reviewing it. Results: There are multiple pitches at adjacent frequencies in the singing bowl sound, and they give rise to the beat phenomenon. This results in a solid persisting beating felt in the singing bowl sound. Furthermore, the beat that depends on singing bowls and playing methods includes a rhythm often similar to the frequency band of brain waves (theta wave) observed in meditative states and induces a synchronization phenomenon in which the rhythm activates the brain waves in meditative states. Furthermore, we are to infer that the clinical effect of the singing bowl sound is closely associated with the synchronization of brain waves to the beat rhythm of the singing bowl sound. Conclusion: To clearly understand the clinical mechanism of the singing bowl sound, we suggest further systematic studies on the psychological and physiological responses to the beats of the singing bowl sound.