• Title/Summary/Keyword: Brain imaging technique

Search Result 134, Processing Time 0.023 seconds

Neuroimaging Studies of Chronic Pain

  • Kang, Do-Hyung;Son, June-Hee;Kim, Yong-Chul
    • The Korean Journal of Pain
    • /
    • v.23 no.3
    • /
    • pp.159-165
    • /
    • 2010
  • The evolution of brain imaging techniques over the last decade has been remarkable. Along with such technical developments, research into chronic pain has made many advances. Given that brain imaging is a non-invasive technique with great spatial resolution, it has played an important role in finding the areas of the brain related to pain perception as well as those related to many chronic pain disorders. Therefore, in the near future, brain imaging techniques are expected to be the key to the discovery of many unknown etiologies of chronic pain disorders and to the subjective diagnoses of such disorders.

Accuracy of image registration for radiation treatment planning using a brain phantom

  • Jin, Ho-Sang;Suh, Tae-Suk;Song, Ju-Young;Juh, Ra-Hyeong;Kwark, Chul-Eun;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.106-106
    • /
    • 2002
  • Purpose: The purposes of our study are (1) to develop a brain phantom which can be used for multimodal image registration, (2) to evaluate the accuracy of image registration with the home-made phantom. Method: A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using chamfer matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods for CT, MR imaging and Pb rods for SPECT imaging. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process.

  • PDF

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

  • Kim, Hak Yeong;Seo, Kain;Jeon, Hong Jin;Lee, Unjoo;Lee, Hyosang
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.523-532
    • /
    • 2017
  • Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.

Implementation of the Feed and Swaddle Technique as a Non-Pharmacological Strategy to Conduct Brain Magnetic Resonance Imaging in Very Low Birth Weight Infants

  • Yoo, Yeong Myong;Park, Ji Eun;Park, Moon Sung;Lee, Jang Hoon
    • Neonatal Medicine
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2021
  • Purpose: Magnetic resonance imaging (MRI) is a useful tool for evaluating brain injury and maturation in preterm infants and often requires sedation to acquire images of sufficient quality. Infant sedation is often associated with adverse events, despite extreme precautions. In this study, the swaddling technique was investigated as an alternative non-pharmacological strategy to obtain brain MRIs of sufficient quality. Methods: We applied the feed and swaddle technique during routine brain MRI as a quality improvement project and compared its morbidity with that of sedation in a historic age-matched group. Seventy-nine very low birth weight infants in the neonatal intensive care unit of Ajou University Hospital (Suwon, Korea) were enrolled. Thirty-two (40.5%) infants were in the feed and swaddling group, and 47 (59.5%) were in the sedation group. Results: The morbidity associated with the cardiopulmonary system (swaddling group vs. sedation group: 53.13% [n=17] vs. 63.83% [n=30], P=0.723) and central nervous system (40.63% [n=13] vs. 29.79% [n=14], P=0.217) were not significantly different between groups. The MRI failure rate was not significantly different (swaddling group vs. sedation group: 12.5% [n=4] vs. 4.3% [n=2], P=0.174). The MRI scanning time was longer in the swaddling group than in the sedation group (76.5±20.3 minutes vs. 61.5±13.6 minutes, P=0.001). Cardiopulmonary adverse events were significantly less common in the swaddling group than in the sedation group (3.13% [n=1] vs. 34.04% [n=16], P=0.002). Conclusion: The success rate of MRI was comparable between the swaddling technique and sedation. Furthermore, despite the drawback of prolonged scan time, cardiopulmonary adverse events are fewer with swaddling than with sedative agents. Therefore, swaddling can be an alternative to sedation or anesthesia when performing neonatal MRI scans.

A review of the Implementation of Functional Brain Imaging Techniques in Auditory Research focusing on Hearing Loss (청각 연구에서 기능적 뇌 영상 기술 적용에 대한 고찰: 난청을 중심으로)

  • Hye Yoon Seol;Jaeyoung Shin
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Functional brain imaging techniques have been used to diagnose psychiatric disorders such as dementia, depression, and autism. Recently, these techniques have also been actively used to study hearing loss. The present study reviewed the application of the functional brain imaging techniques in auditory research, especially those focusing on hearing loss, over the past decade. EEG, fMRI, fNIRS, MEG, and PET have been utilized in auditory research, and the number of research studies using these techniques has been increasing. In particular, fMRI and EEG were the most frequently used technique in auditory research. EEG studies mostly used event-related designs to analyze the direct relationship between stimulus and the related response, and in fMRI studies, resting-state functional connectivity and block designs were utilized to analyze alterations in brain functionality in hearing-related areas. In terms of age, while studies involving children mainly focused on congenital and pre- and post-lingual hearing loss to analyze developmental characteristics with and without hearing loss, those involving adults focused on age-related hearing loss to investigate changes in the characteristics of the brain based on the presence of hearing loss and the use of a hearing device. Overall, ranging from EEG to PET, various functional brain imaging techniques have been used in auditory research, but it is difficult to perform a comprehensive analysis due to the lack of consistency in experimental designs, analysis methods, and participant characteristics. Thus, it is necessary to develop standardized research protocols to obtain high-quality clinical and research evidence.

Advances and Applications of Mass Spectrometry Imaging in Neuroscience: An Overview

  • Bharath S. Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.57-78
    • /
    • 2023
  • Understanding the chemical composition of the brain helps researchers comprehend various neurological processes effectively. Understanding of the fundamental pathological processes that underpin many neurodegenerative disorders has recently advanced thanks to the advent of innovative bioanalytical techniques that allow high sensitivity and specificity with chemical imaging at high resolution in tissues and cells. Mass spectrometry imaging [MSI] has become more common in biomedical research to map the spatial distribution of biomolecules in situ. The technique enables complete and untargeted delineation of the in-situ distribution characteristics of proteins, metabolites, lipids, and peptides. MSI's superior molecular specificity gives it a significant edge over traditional histochemical methods. Recent years have seen a significant increase in MSI, which is capable of simultaneously mapping the distribution of thousands of biomolecules in the tissue specimen at a high resolution and is otherwise beyond the scope of other molecular imaging techniques. This review aims to acquaint the reader with the MSI experimental workflow, significant recent advancements, and implementations of MSI techniques in visualizing the anatomical distribution of neurochemicals in the human brain in relation to various neurogenerative diseases.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Comparative Study of Functional Magnetic Resonance Imaging by Global Scaling Analysis (Global Scaling 분석방법에 따른 기능적 자기공명영상의 비교 연구)

  • Yoo, Dong-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Purpose : To evaluate the effect of global scaling analysis on brain activation for sensory and motor functional MR imaging study. Materials and methods : Four normal subjects without abnormal neurological history were included. Arm extension-flexion movement was used for motor function and 1KHz pure tone stimulation was used for auditory function. Functional magnetic resonance imaging was performed at 3T MRI (GE, Milwaukee, USA) using BOLD-EPI technique and SPM2 was employed for data analysis. On data analysis, the brain activation images were obtained with and without global scaling by fixing other parameters such as motion correction and realignment. Results : The difference in brain activation between no scaling and global scaling was not large in case of right upper extremity movement (p<0.000001). For auditory test, brain activation with global scaling showed larger activation than that of without global scaling (p<0.05). Conclusion : A caution must be taken into account when analyzing functional imaging data with global scaling especially for functional study of small local BOLD signal change.

  • PDF

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

  • Wen, Min;Jung, Shin;Moon, Kyung-Sub;Jiang, Shen Nan;Li, Song-Yuan;Min, Jung-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.131-135
    • /
    • 2014
  • Objective : With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique. Methods : U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft. Results : The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors. Conclusion : The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.