• 제목/요약/키워드: Brain Technology

검색결과 1,267건 처리시간 0.031초

화학적 및 유전공학적으로 제조한 뇌송달 벡터의 뇌수송량 비교 (Comparison of Brain Uptakes for Brain Drug Delivery Vector Synthesized by Chemical and Genetical Engineering Method)

  • 강영숙;서경희
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권2호
    • /
    • pp.87-92
    • /
    • 1999
  • Drug delivery to the brain may be achieved by producing chimeric peptide, attaching the drug to protein 'vectors' which are transported into the brain from the blood by a receptor-mediated transcytosis through the blood-brain barrier (BBB). Since the BBB expresses high concentrations of transferrin receptor, and it was reported that anti-transferrin receptor mouse monoclonal antibody (OX26) undergoes transcytosis through the BBB, it is logical to assume that a drug delivery system via transferrin receptor-mediated transcytosis is a promising strategy. In the present study, therefore, we tested feasibility of several OX26 based vectors for the brain delivery of a model drug. Avidin-based delivery vectors such as OX26-streptavidin (OX26-SA), OX26-neutralite avidin (OX26-NLA) were chemically synthesized vectors and OX26 immunoglobulin G 3 type $C_{H}3$ fusion avidin $(OX26\;IgG3C_H3-AV)$ was genetically engineered. To improve the efficiency of producing chimeric peptide, we used avidin-biotin technology. Pharmacokinetics of $[^3H]biotin$ bound to OX26-SA, OX26-NLA and $OX26\;IgG3C_H3-AV$ was determined by intravenous injection technique, and their stabilities in plasma were analyzed using HPLC. The brain delivery of $[^3H]biotin$ bound to OX26-SA, OX26-NLA and OX26\;$IgG3C_{H}3-AV$ (expressed as %ID/g brain) was $0.22{\pm}0.01$, $0.18{\pm}0.01$ and $0.25{\pm}0.09$, respectively. The areas under the plasma concentration versus time curve (AUC) for OX26-SA, OX26-NLA, $OX26\;IgG3C_H3-AV$ from time zero to 60 min were $209{\pm}10$, $195{\pm}9$, $134{\pm}29\;%ID\;min/ml$ respectively and their total clearances $(CL_{tot})$ were $1.00{\pm}0.09$, $1.08{\pm}0.07$ and $1.54{\pm}0.29\;ml/min/kg$, espectively. These results showed that these vectors possess preferable pharmaceutical (e.g., resonable stability) and pharmacokinetics (e.g., significant brain uptake and enhanced AUC) for brain delivery. Therefore, these vectors may be broadly useful in the brain delivery of drugs that are not transported into the brain to a significant extent.

  • PDF

영상을 이용한 감정분석에서의 뇌파 수치 비교 (Comparison of brain wave values in emotional analysis using video)

  • 조재현;이상식;장지훈;정진형
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.519-525
    • /
    • 2023
  • 인간의 뇌는 끊임없이 전기적인 임펄스를 발산하는데 이것을 뇌파라고 하고, 뇌파는 뇌 세포들의 생화학적 상호 작용에 의해 발생하는 이온의 흐름으로 인해서 생성되는 뇌의 전기적 활동으로 정의할 수 있다. 감정이 스트레스를 유발할 수 있는 요인중 하나라는 연구가 있으며, 감정에 대한 연구에서는 뇌파를 많이 사용하고 있다. 본 논문은 감정이 스트레스에 영향을 주는지에 대한 연구로서, 4명의 실험자에게 공포, 기쁨 2가지 영상을 보여주고 시청 전, 시청 중, 시청 후 3단계로 나누었다. 측정 도구로는 뇌파 측정, 분석, 뇌파 강화 그리고 억제 트레이닝을 원격제어로 자동화가 가능한 시스템인 NeuroBrain System(뉴로브레인 시스템)을 사용하여 Fp1과 Fp2의 위치에서의 뇌파를 측정했다. 그리고 각각의 감정에 대한 뇌파 데이터를 얻은 후 평균 값을 구해 연구를 진행했다. 스트레스와 관련 있는 주파수로는 Alpha(알파)파와 Beta(베타)파이기에 측정된 주파수 중 Alpha와 SMR, Low Beta와 High Beta 수치를 위주로 분석했다. 뇌파 분석을 통해 감정 상태에 따라 스트레스 영향을 주는데 '공포' 감정은 Beta 수치를 높여 불안을 유발해 Mind Stress 수치를 높아지게 하는 결과가 나왔고, '기쁨' 감정은 Beta의 수치를 낮추어 Mind Stress도 많이 하락하는 결과가 나왔다.

Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

  • Kim, So Yeun;Yoo, Seung-Jun;Ronnett, Gabriele V;Kim, Eun-Kyoung;Moon, Cheil
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.535-539
    • /
    • 2015
  • Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.

C9orf72-Associated Arginine-Rich Dipeptide Repeat Proteins Reduce the Number of Golgi Outposts and Dendritic Branches in Drosophila Neurons

  • Park, Jeong Hyang;Chung, Chang Geon;Seo, Jinsoo;Lee, Byung-Hoon;Lee, Young-Sam;Kweon, Jung Hyun;Lee, Sung Bae
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.821-830
    • /
    • 2020
  • Altered dendritic morphology is frequently observed in various neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the cellular and molecular basis underlying these pathogenic dendritic abnormalities remains largely unclear. In this study, we investigated dendritic morphological defects caused by dipeptide repeat protein (DPR) toxicity associated with G4C2 expansion mutation of C9orf72 (the leading genetic cause of ALS and FTD) in Drosophila neurons and characterized the underlying pathogenic mechanisms. Among the five DPRs produced by repeat-associated non-ATG translation of G4C2 repeats, we found that arginine-rich DPRs (PR and GR) led to the most significant reduction in dendritic branches and plasma membrane (PM) supply in Class IV dendritic arborization (C4 da) neurons. Furthermore, expression of PR and GR reduced the number of Golgi outposts (GOPs) in dendrites. In Drosophila brains, expression of PR, but not GR, led to a significant reduction in the mRNA level of CrebA, a transcription factor regulating the formation of GOPs. Overexpressing CrebA in PR-expressing C4 da neurons mitigated PM supply defects and restored the number of GOPs, but the number of dendritic branches remained unchanged, suggesting that other molecules besides CrebA may be involved in dendritic branching. Taken together, our results provide valuable insight into the understanding of dendritic pathology associated with C9-ALS/FTD.

CBP-Mediated Acetylation of Importin α Mediates Calcium-Dependent Nucleocytoplasmic Transport of Selective Proteins in Drosophila Neurons

  • Cho, Jae Ho;Jo, Min Gu;Kim, Eun Seon;Lee, Na Yoon;Kim, Soon Ha;Chung, Chang Geon;Park, Jeong Hyang;Lee, Sung Bae
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.855-867
    • /
    • 2022
  • For proper function of proteins, their subcellular localization needs to be monitored and regulated in response to the changes in cellular demands. In this regard, dysregulation in the nucleocytoplasmic transport (NCT) of proteins is closely associated with the pathogenesis of various neurodegenerative diseases. However, it remains unclear whether there exists an intrinsic regulatory pathway(s) that controls NCT of proteins either in a commonly shared manner or in a target-selectively different manner. To dissect between these possibilities, in the current study, we investigated the molecular mechanism regulating NCT of truncated ataxin-3 (ATXN3) proteins of which genetic mutation leads to a type of polyglutamine (polyQ) diseases, in comparison with that of TDP-43. In Drosophila dendritic arborization (da) neurons, we observed dynamic changes in the subcellular localization of truncated ATXN3 proteins between the nucleus and the cytosol during development. Moreover, ectopic neuronal toxicity was induced by truncated ATXN3 proteins upon their nuclear accumulation. Consistent with a previous study showing intracellular calcium-dependent NCT of TDP-43, NCT of ATXN3 was also regulated by intracellular calcium level and involves Importin α3 (Imp α3). Interestingly, NCT of ATXN3, but not TDP-43, was primarily mediated by CBP. We further showed that acetyltransferase activity of CBP is important for NCT of ATXN3, which may acetylate Imp α3 to regulate NCT of ATXN3. These findings demonstrate that CBP-dependent acetylation of Imp α3 is crucial for intracellular calcium-dependent NCT of ATXN3 proteins, different from that of TDP-43, in Drosophila neurons.

뇌과학 기반의 IT융합 신산업 육성에 관한 탐색적 연구 (A Preliminary Study on Promoting Policy for New IT Convergence Industry based on Brain Science)

  • 노규성;주성환
    • 디지털융복합연구
    • /
    • 제10권5호
    • /
    • pp.199-206
    • /
    • 2012
  • 뇌과학 기반 lT융합 산업은 뇌과학을 IT기술과 융합하여 국민의 건강을 획기적으로 개선시킬 것으로 기대되는 뇌과학 기반의 IT서비스를 발굴하고, 이러한 서비스를 토대로 새로운 시장을 형성할 산업으로서 우리나라의 신성장동력 산업으로 발전할 것이 기대되고 있다. 이에 본 연구는 이러한 뇌과학 기반의 IT융합 신산업 육성에 관한 정책을 탐색적으로 제안하는 것을 목적으로 한다. 이를 위해 본 연구는 첫째, 뇌과학 기반 IT융합산업 생태계를 정의하고, 둘째, 뇌과학 기반 IT융합산업의 서비스 유형을 구분하며, 셋째, 본 산업의 활성화를 위한 정책 방향 및 추진 전략을 제안한다.

가상현실에서의 뇌파측정을 위한 디자인 고찰 및 제안 (The New Design of Brain Measurement System for Immersive Virtual Reality)

  • 김경모;전준현
    • 한국HCI학회논문지
    • /
    • 제12권4호
    • /
    • pp.75-80
    • /
    • 2017
  • 최근 인지과학의 활발한 연구와 기술의 발달로 인해 사회과학분야에서 정신생리학적 연구를 통한 뇌의 다양한 측정과 정교한 분석 기법이 개발 되었다. 그러나 뇌파를 이용한 뉴미디어활용에 관한 연구는 장비들을 장착하는 과정에서의 한계점으로 인해 진행되지 못하였다. 이러한 문제를 극복하고자, 가상현실장비를 착용한 상태에서도 전 영역의 뇌파측정이 가능한 캡을 디자인하고 활용방법을 제안한다.

Enhanced CNN Model for Brain Tumor Classification

  • Kasukurthi, Aravinda;Paleti, Lakshmikanth;Brahmaiah, Madamanchi;Sree, Ch.Sudha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.143-148
    • /
    • 2022
  • Brain tumor classification is an important process that allows doctors to plan treatment for patients based on the stages of the tumor. To improve classification performance, various CNN-based architectures are used for brain tumor classification. Existing methods for brain tumor segmentation suffer from overfitting and poor efficiency when dealing with large datasets. The enhanced CNN architecture proposed in this study is based on U-Net for brain tumor segmentation, RefineNet for pattern analysis, and SegNet architecture for brain tumor classification. The brain tumor benchmark dataset was used to evaluate the enhanced CNN model's efficiency. Based on the local and context information of the MRI image, the U-Net provides good segmentation. SegNet selects the most important features for classification while also reducing the trainable parameters. In the classification of brain tumors, the enhanced CNN method outperforms the existing methods. The enhanced CNN model has an accuracy of 96.85 percent, while the existing CNN with transfer learning has an accuracy of 94.82 percent.

뇌종양 환자의 불확실성 개념분석 (Concept Analysis of Uncertainty in Brain Tumor Patients)

  • 김지현;양남영;전미양
    • 가정간호학회지
    • /
    • 제30권1호
    • /
    • pp.84-95
    • /
    • 2023
  • Purpose: This study aimed to clarify the concept of uncertainty in brain tumor patients. Methods: We used the Walker and Avant's concept analysis method. We searched RISS, MEDLINE, CINAHL, and EMBASE for published articles in Korean and English from January 2002 to December 2022. After applying the inclusion and exclusion criteria, 27 articles were selected for the final analysis. Result: "Uncertainty in brain tumor" was defined as a state in which related clues during the process of experiencing a disease after brain tumor diagnosis are unclear or difficult to understand, new experiences different from before, or a condition in which it is difficult to judge fragmentarily. Moreover, the empirical criteria for the attributes of uncertainty in brain tumor patients were ambiguity of the disease process, diversity of information, unpredictability of prognosis, and complexity of management. Conclusion: Brain tumor patients with uncertainty require strategic technology development so that brain tumor patients, their families, and health care providers can use reasonable coping methods.