• Title/Summary/Keyword: Brain Segmentation

Search Result 125, Processing Time 0.024 seconds

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

Segmentation and Volume Calculation through the Analysis of Blurred Gray Value from the Brain MRI (뇌의 MR 영상에서 번짐 현상의 명암 값 분석을 통한 백질과 회백질의 추출 및 체적 산출)

  • Sung, Yun-Chang;Yoo, Seung-Wha;Song, Chang-Jun;Park, Jong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.815-826
    • /
    • 2000
  • This study is for the segmentation and volume calculation of the white matter and gray matter from brain MRI. In general, the volume of white and gray matter is reduced by contraction of each components in the case of mental retardation which are Alzheimer's disease and Down's syndrome. As results, it is useful for diagnostic and early detection for various mental retardation through the tracing of variation for its volume from the brain MRI. But, until now, it was very difficult to calculate the partial volume of each components existing in some thickness, because MR image was represented by single gray value after scanning by MR scanner. Accordingly, new segmentation algorithm proposed in this paper is to calculate the partial volume of the white and gray matter existing in some thickness through the analysis of the blurred gray value, and is to determine the threshold for segmentation of white and gray matter, and is to calculate the volume of each segmented component. And finally, proposed algorithm was applied the models which was created manually, and then acquired results was compared with that of original model.

  • PDF

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.

Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering (스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘;박길흠
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.339-346
    • /
    • 2000
  • Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

  • PDF

Compar ison of Level Set-based Active Contour Models on Subcor tical Image Segmentation

  • Vongphachanh, Bouasone;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.827-833
    • /
    • 2015
  • In this paper, we have compared three level set-based active contour (LSAC) methods on inhomogeneous MR image segmentation which is known as an important role of brain diseases to diagnosis and treatment in early. MR image is often occurred a problem with similar intensities and weak boundaries which have been causing many segmentation methods. However, LSAC method could be able to segment the targets such as the level set based on the local image fitting energy, the local binary fitting energy, and local Gaussian distribution fitting energy. Our implemented and tested the subcortical image segmentations were the corpus callosum and hippocampus and finally demonstrated their effectiveness. Consequently, the level set based on local Gaussian distribution fitting energy has obtained the best model to accurate and robust for the subcortical image segmentation.

Transfer-learning-based classification of pathological brain magnetic resonance images

  • Serkan Savas;Cagri Damar
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.263-276
    • /
    • 2024
  • Different diseases occur in the brain. For instance, hereditary and progressive diseases affect and degenerate the white matter. Although addressing, diagnosing, and treating complex abnormalities in the brain is challenging, different strategies have been presented with significant advances in medical research. With state-of-art developments in artificial intelligence, new techniques are being applied to brain magnetic resonance images. Deep learning has been recently used for the segmentation and classification of brain images. In this study, we classified normal and pathological brain images using pretrained deep models through transfer learning. The EfficientNet-B5 model reached the highest accuracy of 98.39% on real data, 91.96% on augmented data, and 100% on pathological data. To verify the reliability of the model, fivefold cross-validation and a two-tier cross-test were applied. The results suggest that the proposed method performs reasonably on the classification of brain magnetic resonance images.

Brain Region Segmentation on MR Brain Image (MR Brain 영상에서의 뇌 영역 분할)

  • 김령주;이병일;최흥국;이동수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.95-98
    • /
    • 2001
  • 본 논문은 뇌의 축방향(axial sect ion)에 대하여 촬영한 뇌의 자기공명 영상(Magnetic Resonance Imaging)을 대상으로 뇌의 영역만을 분리하기 위한 방법을 제안하고 있다. MR영상은 슬라이스마다 다른 분포값을 가지기 때문에 각 슬라이스 별로 조직의 특성을 파악하여 뇌의 영역을 분리하였다. 히스토그램의 명암값 분포를 분석하여 배경과 뇌를 둘러싸고 있는 외피를 제거하고 라벨링(label1ing) 알고리즘을 적용하여 뇌만 분리 할 수 있도록 하는 마스크 영상을 만들어 이것을 이용하여 원영상으로부터 뇌의 영역만을 분리하였다.

  • PDF

Region Segmentation and Volumetry of Brain MR Image represented as Blurred Gray Value by the Partial Volume Artifact (부분체적에 의해 번진 명암 값으로 표현된 뇌의 자기공명영상에 대한 영역분할 및 체적계산)

  • 성윤창;송창준;노승무;박종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1006-1016
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image and to calculate the volume of each. First, after removing the background on a brain MR image, we segmented the whole region of a brain from a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenerative diseases such as Alzheimer's disease and cerebral palsy.

  • PDF

Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation

  • Heera Yoen;Roh-Eul Yoo;Seung Hong Choi;Eunkyung Kim;Byung-Mo Oh;Dongjin Yang;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.118-130
    • /
    • 2021
  • Objective: This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods: Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results: Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion: BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.

Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images

  • Yura Ahn;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Jung Hee Son;Yu Sub Sung;Yedaun Lee;Bo-Kyeong Kang;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.987-997
    • /
    • 2020
  • Objective: Measurement of the liver and spleen volumes has clinical implications. Although computed tomography (CT) volumetry is considered to be the most reliable noninvasive method for liver and spleen volume measurement, it has limited application in clinical practice due to its time-consuming segmentation process. We aimed to develop and validate a deep learning algorithm (DLA) for fully automated liver and spleen segmentation using portal venous phase CT images in various liver conditions. Materials and Methods: A DLA for liver and spleen segmentation was trained using a development dataset of portal venous CT images from 813 patients. Performance of the DLA was evaluated in two separate test datasets: dataset-1 which included 150 CT examinations in patients with various liver conditions (i.e., healthy liver, fatty liver, chronic liver disease, cirrhosis, and post-hepatectomy) and dataset-2 which included 50 pairs of CT examinations performed at ours and other institutions. The performance of the DLA was evaluated using the dice similarity score (DSS) for segmentation and Bland-Altman 95% limits of agreement (LOA) for measurement of the volumetric indices, which was compared with that of ground truth manual segmentation. Results: In test dataset-1, the DLA achieved a mean DSS of 0.973 and 0.974 for liver and spleen segmentation, respectively, with no significant difference in DSS across different liver conditions (p = 0.60 and 0.26 for the liver and spleen, respectively). For the measurement of volumetric indices, the Bland-Altman 95% LOA was -0.17 ± 3.07% for liver volume and -0.56 ± 3.78% for spleen volume. In test dataset-2, DLA performance using CT images obtained at outside institutions and our institution was comparable for liver (DSS, 0.982 vs. 0.983; p = 0.28) and spleen (DSS, 0.969 vs. 0.968; p = 0.41) segmentation. Conclusion: The DLA enabled highly accurate segmentation and volume measurement of the liver and spleen using portal venous phase CT images of patients with various liver conditions.