• Title/Summary/Keyword: Brain Science

Search Result 3,467, Processing Time 0.035 seconds

Mutation Analysis of Synthetic DNA Barcodes in a Fission Yeast Gene Deletion Library by Sanger Sequencing

  • Lee, Minho;Choi, Shin-Jung;Han, Sangjo;Nam, Miyoung;Kim, Dongsup;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2018
  • Incorporation of unique barcodes into fission yeast gene deletion collections has enabled the identification of gene functions by growth fitness analysis. For fine tuning, it is important to examine barcode sequences, because mutations arise during strain construction. Out of 8,708 barcodes (4,354 strains) covering 88.5% of all 4,919 open reading frames, 7,734 barcodes (88.8%) were validated as high-fidelity to be inserted at the correct positions by Sanger sequencing. Sequence examination of the 7,734 high-fidelity barcodes revealed that 1,039 barcodes (13.4%) deviated from the original design. In total, 1,284 mutations (mutation rate of 16.6%) exist within the 1,039 mutated barcodes, which is comparable to budding yeast (18%). When the type of mutation was considered, substitutions accounted for 845 mutations (10.9%), deletions accounted for 319 mutations (4.1%), and insertions accounted for 121 mutations (1.6%). Peculiarly, the frequency of substitutions (67.6%) was unexpectedly higher than in budding yeast (~28%) and well above the predicted error of Sanger sequencing (~2%), which might have arisen during the solid-phase oligonucleotide synthesis and PCR amplification of the barcodes during strain construction. When the mutation rate was analyzed by position within 20-mer barcodes using the 1,284 mutations from the 7,734 sequenced barcodes, there was no significant difference between up-tags and down-tags at a given position. The mutation frequency at a given position was similar at most positions, ranging from 0.4% (32/7,734) to 1.1% (82/7,734), except at position 1, which was highest (3.1%), as in budding yeast. Together, well-defined barcode sequences, combined with the next-generation sequencing platform, promise to make the fission yeast gene deletion library a powerful tool for understanding gene function.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.

The effect of nutraceutical containing PRF-K2 on periodontal condition during maintenance phase (치주 유지관리기 환자에게 PRF-K2를 함유한 nutraceutical의 효과)

  • Kim, Yu-Kang;Chung, Hyun-Ju;Kim, Se-Won;Baek, Dong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • The long term success of periodontal treatment is dependent upon the effectiveness of the main-tenance care program after active treatment. The purpose of this study was to evaluate whether nutraceutical containing PRF-K2 as natural product from plant and seaweed has beneficial effects on clinical parameters, gingival crevicular fluid (GCF) volume and GCF cytokine levels during main- tenance phase after periodontal treatment. Among the generally healthy and non-smoking. moderate to severe chronic periodontitis patients during maintenance phase in Department of Periodontics, Chonnam National University Hospital, twenty eight patients took nutraceutical containing PRF-K2 (Oscotec Inc. Cheonan, Korea) for 3 months as experimental group and sixteen patients received only maintenance care as control group. Clinical examination and GCF collection were performed at baseline, 1, 2 and 3 months of experiment. Total amounts and concentrations of GCF IL-1{\beta}, IL-1ra and $PGE_2$ were evaluated using ELISA kit. In probing pocket depth, experimental group showed the tendency of more reduction than control group after 3 months of experiment. Sulcus bleeding index (SBI) and GCF volume were significantly decreased in experimental group(p<0.05), whereas they were increased in control group. GCF IL-1{\beta} level tended to decrease in both experimental and control group and IL-1ra concentration tended to increase in experimental group and to decrease in control group. IL-1ra/IL-1{\beta} ratio tended to increase in experimental group and to decrease in control group during experimental period. GCF $PGE_2$ amount did not show any change in experimental group and tended to increase in control group. These results suggest that nutraceutical supplement which contain PRF-K2 could improve perio-dontal condition during maintenance phase after periodontal therapy.

Sex Differences in Autism-Like Behavioral Phenotypes and Postsynaptic Receptors Expression in the Prefrontal Cortex of TERT Transgenic Mice

  • Kim, Ki Chan;Cho, Kyu Suk;Yang, Sung Min;Gonzales, Edson Luck;Valencia, Schley;Eun, Pyeong Hwa;Choi, Chang Soon;Mabunga, Darine Froy;Kim, Ji-Woon;Noh, Judy Kyoungju;Kim, Hee Jin;Jeon, Se Jin;Han, Seol-Heui;Bahn, Geon Ho;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.374-382
    • /
    • 2017
  • Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

  • Chang, Woochul;Kim, Ran;Park, Sang In;Jung, Yu Jin;Ham, Onju;Lee, Jihyun;Kim, Ji Hyeong;Oh, Sekyung;Lee, Min Young;Kim, Jongmin;Park, Moon-Seo;Chung, Yong-An;Hwang, Ki-Chul;Maeng, Lee-So
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.643-650
    • /
    • 2015
  • The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

Community Patterning of Benthic Macroinvertebrates in Urbanized Streams by Utilizing an Artificial Neural Network (인공신경망을 이용한 도시하천의 저서성 대형무척추동물 군집 유형성 연구)

  • Kim, Jwa-Kwan;Chon, Tae-Soo;Kwak, Inn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.29-37
    • /
    • 2003
  • Benthic macro-invertebrates were seasonally collected in the Onchen Stream in Pusan, from July 2001 to March 2002. Generally 4 phylum 5 class 10 order 19 family 23 species were observed in the study sites. Ephemeroptera, Plecoptera and various species appeared in headwater stream while Oligochaeta and Chironomidae were dominated in downstream sites. Community abundance patterns, especially the dominant taxa, Oligochaeta and Chironomidae, appeared to be different depending upon the sampling months. Oligochaeta was usually observed in July, December and March while Chironomidae was appeared in September. The biological indices, TBI(Trent Biotic Index), BS (Biotic Score), BMWP (Biological Monitoring Working Party)were calculated with the appeared communities of the sampling sites through the survey months. TBI showed 1 to 8, BMWP was 1 to 93 and CBI appeared 9 to 387 in the different sites. The biological indices decreased from headstream to downstream sites, We implemented the unsupervised Kohonen network for patterning of community abundance of the sampling sites. The patterning map by the Kohonen network was well represented community abundance of the sampling sites. Also, we conducted RTRN (Real Time Recurrent Neural Network) for predicting of the biological indices in the different sites. The results appeared that the predicting values by RTRN were well matched field data (correlation coefficient of TBI, BMWP and CBI were 0.957, 0.979 and 0.967, respectively).

The Effects of Posture and Sleep Deprivation on Heart Rate Variability (자세와 수면 박탈이 심박 변이도에 미치는 영향)

  • Shim, Young-Woo;Yang, Dong-In;Kim, Nam-Hyun;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • Autonomic nervous system (ANS) acts as a control system functioning largely below the level of consciousness, and controls visceral functions. The activity of the ANS has been assessed by means of the heart rate variability (HRV). It has been reported that HRV is dependent on sex, age, body mass index, and smoking, etc. However, the effects of posture and sleep deprivation on HRV have rarely been reported. Objective of our work was to find out which posture is appropriate for stable HRV. We measured the number of sleep deprivation and HRV using power spectrum in six stages for 30 minutes. Increased low frequency (LF) power and high frequency (HF) power indicate enhanced sympathetic and parasympathetic activity, respectively. We determined the LF/HF ratio to minimize individual difference. It was found that sleep deprivation by awakening up subjects was affected by posture, which resulted in changes of LF/HF. Although LF/HF varied with time, it was more stable in sitting than in supine. In conclusion, we recommend sitting posture when measuring HRV because of less sleep deprivation resulting in less variation in LF/HF.

Comparison of Survival Prediction of Rats with Hemorrhagic Shocks Using Artificial Neural Network and Support Vector Machine (출혈성 쇼크를 일으킨 흰쥐에서 인공신경망과 지원벡터기계를 이용한 생존율 비교)

  • Jang, Kyung-Hwan;Yoo, Tae-Keun;Nam, Ki-Chang;Choi, Jae-Rim;Kwon, Min-Kyung;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.47-55
    • /
    • 2011
  • Hemorrhagic shock is a cause of one third of death resulting from injury in the world. Early diagnosis of hemorrhagic shock makes it possible for physician to treat successfully. The objective of this paper was to select an optimal classifier model using physiological signals from rats measured during hemorrhagic experiment. This data set was used to train and predict survival rate using artificial neural network (ANN) and support vector machine (SVM). To avoid over-fitting, we chose the best classifier according to performance measured by a 10-fold cross validation method. As a result, we selected ANN having three hidden nodes with one hidden layer and SVM with Gaussian kernel function as trained prediction model, and the ANN showed 88.9 % of sensitivity, 96.7 % of specificity, 92.0 % of accuracy and the SVM provided 97.8 % of sensitivity, 95.0 % of specificity, 96.7 % of accuracy. Therefore, SVM was better than ANN for survival prediction.

The Correlation Between Relationship Ability and Activities of Daily Living(ADL) Performance Ability of Patients With Traumatic Brain Injury(TBI) (외상성 뇌손상 환자의 대인관계 능력과 일상생활활동 수행능력과의 상관관계)

  • Lee, Jong-Min
    • Therapeutic Science for Rehabilitation
    • /
    • v.1 no.1
    • /
    • pp.71-79
    • /
    • 2012
  • Objective : To investigate the correlation between relationship ability and ADL performance ability of patients with TBI. Methods : This study was carried out from March 2012 to April 2012 with 20 patients with TBI. Relationship ability assessed using Relationship Change Scale(RCS), ADL performance ability assessed using Functional Independence Measure(FIM). Results : The RCS showed a high level of correlation with marital status and duration of illness. The RCS showed a high level of correlation with the FIM total score and the FIM cognition area. However the RCS did not show a correlation with the FIM motor area. Conclusions : Functional disability of social cognition is a factor that disturbs rehabilitation after TBI and it has a negative influence on the relationship in ADL. If accurate evaluation and treatment on relationship ability after TBI are carried out side by side from the initial stages of onset, we could expect more patients to improve their social cognition and ADL performance ability.

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Kwon, Kyung-Ja;Kang, Young-Sun;Kim, Hee-Jin;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.