References
- Angelucci, F., Brene, S. and Mathe, A. A. (2005). BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry 10, 345-352. https://doi.org/10.1038/sj.mp.4001637
- Bhat, N. R., Zhang P, Lee J. C. and Hogan E. L. (1998). Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 18,1633-1641. https://doi.org/10.1523/JNEUROSCI.18-05-01633.1998
- Bibel, M. and Barde, Y. A. (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919-2937. https://doi.org/10.1101/gad.841400
- Chen, S. O., Fang, S. H., Shih, D. Y., Chang, T. J. and Liu, J. J. (2009). Recombinant core proteins of Japanese encephalitis virus as activators of the innate immune response. Virus Genes 38, 10-18. https://doi.org/10.1007/s11262-008-0299-9
- Conner, J. M., Lauterborn, J. C., Yan, Q., Gall, C. M. and Varon, S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295-2313. https://doi.org/10.1523/JNEUROSCI.17-07-02295.1997
- Cramer, T., Juttner, S., Plath, T., Mergler, S., Seufferlein, T., Wang, T. C., Merchant, J. and Hocker, M. (2008). Gastrin transactivates the chromogranin A gene through MEK-1/ERK- and PKC-dependent phosphorylation of Sp1 and CREB. Cell Signal 20, 60-72. https://doi.org/10.1016/j.cellsig.2007.08.016
- Cui, Q., Zhang, J., Zhang, L., Li, R. and Liu, H. (2009). Angelica injection improves functional recovery and motoneuron maintenance with increased expression of brain derived neurotrophic factor and nerve growth factor. Curr. Neurovasc. Res. 6, 117-123. https://doi.org/10.2174/156720209788185641
- Duman, R. S. (2002). Pathophysiology of depression: the concept of synaptic plasticity. Eur. Psychiatry 17 Suppl 3, 306-310. https://doi.org/10.1016/S0924-9338(02)00654-5
- Duman, R. S., Heninger, G. R. and Nestler, E. J. (1997). A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597-606. https://doi.org/10.1001/archpsyc.1997.01830190015002
- Ernfors, P., Van De Water, T., Loring, J. and Jaenisch, R. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14, 1153-1164. https://doi.org/10.1016/0896-6273(95)90263-5
- Feng, H. L., Leng, Y., Ma, C. H., Zhang, J., Ren, M. and Chuang, D. M. (2008). Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 155, 567-572. https://doi.org/10.1016/j.neuroscience.2008.06.040
- Ha, S. and Redmond, L. (2008). ERK mediates activity dependent neuronal complexity via sustained activity and CREB-mediated signaling. Dev. Neurobiol. 68, 1565-1579. https://doi.org/10.1002/dneu.20682
- Hemmings, S. M., Kinnear, C. J., Van der Merwe, L., Lochner, C., Corfield, V. A., Moolman-Smook, J. C. and Stein, D. J. (2008). Investigating the role of the brain-derived neurotrophic factor (BDNF) val66met variant in obsessive-compulsive disorder (OCD). World J. Biol. Psychiatry 9, 126-134. https://doi.org/10.1080/15622970701245003
- Hofer, M., Pagliusi, S. R., Hohn, A., Leibrock, J. and Barde, Y. A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO. J. 9, 2459-2464.
- Hu, Y. and Russek, S. J. (2008). BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J. Neurochem. 105, 1-17. https://doi.org/10.1111/j.1471-4159.2008.05237.x
- Huang, E. J. and Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677
- Imming, P., Sinning, C. and Meyer, A. (2006). Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821-834. https://doi.org/10.1038/nrd2132
- Jung, H. A., Min, B. S., Yokozawa, T., Lee, J. H., Kim, Y. S. and Choi, J. S. (2009). Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull. 32, 1433-1438. https://doi.org/10.1248/bpb.32.1433
- Kim, D. H., Jeon, S. J., Son, K. H., Jung, J. W., Lee, S., Yoon, B. H., Choi, J. W., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2006). Effect of the flavonoid, oroxylin A, on transient cerebral hypoperfusion-induced memory impairment in mice. Pharmacol. Biochem. Behav. 85, 658-668. https://doi.org/10.1016/j.pbb.2006.10.025
- Kim, S. R. and Kim, Y. C. (2000). Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. Phytochemistry 54, 503-509. https://doi.org/10.1016/S0031-9422(00)00110-2
- Liu, C., Lin, N., Wu, B. and Qiu, Y. (2009). Neuroprotective effect of memantine combined with topiramate in hypoxic-ischemic brain injury. Brain Res. 1282, 173-182. https://doi.org/10.1016/j.brainres.2009.05.071
- Liu, C., Wu, J., Gu, J., Xiong, Z., Wang, F., Wang, J., Wang, W. and Chen, J. (2007). Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol. Biochem. Behav. 86, 423-430. https://doi.org/10.1016/j.pbb.2006.11.005
- Lyden, P. D., Jackson-Friedman, C., Shin, C. and Hassid, S. (2000). Synergistic combinatorial stroke therapy: A quantal bioassay of a GABA agonist and a glutamate antagonist. Exp. Neurol. 163, 477-489. https://doi.org/10.1006/exnr.2000.7394
- Maekawa, T., Sakura, H., Kanei-Ishii, C., Sudo, T., Yoshimura, T., Fujisawa, J., Yoshida, M. and Ishii, S. (1989). Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO. J. 8, 2023-2028.
- Mu, X., He, G., Cheng, Y., Li, X., Xu, B. and Du, G. (2009). Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav. 92, 642-648. https://doi.org/10.1016/j.pbb.2009.03.008
- Novikova, L. N., Novikov, L. N. and Kellerth, J. O. (2000). BDNF abolishes the survival effect of NT-3 in axotomized Clarke neurons of adult rats. J. Comp. Neurol. 428, 671-680. https://doi.org/10.1002/1096-9861(20001225)428:4<671::AID-CNE7>3.0.CO;2-H
- Ozan, E., Okur, H., Eker, C., Eker, O. D., Gonul, A. S. and Akarsu, N. (2010). The effect of depression, BDNF gene val66met polymorphism and gender on serum BDNF levels. Brain Res. Bull. 15, 61-65.
- Park, J., Koito, H., Li, J. and Han, A. (2009). Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11, 1145-1153. https://doi.org/10.1007/s10544-009-9331-7
- Piao, H. Z., Jin, S. A., Chun, H. S., Lee, J. C. and Kim, W. K. (2004). Neuroprotective effect of wogonin: potential roles of inflammatory cytokines. Arch. Pharm. Res. 27, 930-936. https://doi.org/10.1007/BF02975846
- Rumajogee, P., Madeira, A., Verge, D., Hamon, M. and Miquel, M. C. (2002). Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J. Neurochem. 83, 1525-1528. https://doi.org/10.1046/j.1471-4159.2002.01264.x
- Sairanen, M., Lucas, G., Ernfors, P., Castren, M. and Castren, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089-1094. https://doi.org/10.1523/JNEUROSCI.3741-04.2005
- Sasaki, T., Dai, X. Y., Kuwata, S., Fukuda, R., Kunugi, H., Hattori, M. and Nanko, S. (1997). Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am. J. Med. Genet. 74, 443-444. https://doi.org/10.1002/(SICI)1096-8628(19970725)74:4<443::AID-AJMG17>3.0.CO;2-I
- Sato, K., Suematsu, A., Nakashima, T., Takemoto-Kimura, S., Aoki, K., Morishita, Y., Asahara, H., Ohya, K., Yamaguchi, A., Takai, T. (2006). Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med. 12, 1410-1416. https://doi.org/10.1038/nm1515
- Soppet, D., Escandon, E., Maragos, J., Middlemas, D. S., Reid, S. W., Blair, J., Burton, L. E., Stanton, B. R., Kaplan, D. R., Hunter, T., et al. (1991). The neurotrophic factors brainderived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895-903. https://doi.org/10.1016/0092-8674(91)90396-G
- Wagner, H. and Ulrich-Merzenich, G. (2009). Synergy research: approaching a new generation of phytopharmaceuticals.Phytomedicine 16, 97-110. https://doi.org/10.1016/j.phymed.2008.12.018
- Wang, Z., Hu, S. Y., Lei, D. L. and Song, W. X. (2006). Effect of chronic stress on PKA and P-CREB expression in hippocampus of rats and the antagonism of antidepressors. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31, 767-771.
- Xia, W. J., Yang, M., Fok, T. F., Li, K., Chan, W. Y., Ng, P. C., Ng, H. K., Chik, K. W., Wang, C. C., Gu, G. J., et al. (2005). Partial neuroprotective effect of pretreatment with tanshinone IIA on neonatal hypoxia-ischemia brain damage. Pediatr. Res 58, 784-790. https://doi.org/10.1203/01.PDR.0000180550.99162.BC
- Yamashita, K., Kotani, Y., Nakajima, Y., Shimazawa, M., Yoshimura, S., Nakashima, S., Iwama, T. and Hara, H. (2007). Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res. 1154, 215-224. https://doi.org/10.1016/j.brainres.2007.04.013
- Yu, H. L., Li, L., Zhang, X. H., Xiang, L., Zhang, J., Feng, J. F. and Xiao, R. (2009). Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by beta-amyloid 31-35. Br. J. Nutr. 102, 655-662. https://doi.org/10.1017/S0007114509243042
- Yu, X. Y., Lin, S. G., Zhou, Z. W., Chen, X., Liang, J., Liu, P. Q., Duan, W., Chowbay, B., Wen, J. Y., Li, C. G. and Zhou, S. F. (2007). Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge. Curr. Drug Metab. 8, 325-340. https://doi.org/10.2174/138920007780655450
- Zuccato, C. and Cattaneo, E. (2009). Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 5, 311-322. https://doi.org/10.1038/nrneurol.2009.54
Cited by
- Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection 2010, https://doi.org/10.1111/j.1600-079X.2010.00820.x
- Pharmacochemistry and integrated pharmacokinetics of six alkaloids after oral administration of Huang-Lian-Jie-Du-Tang decoction vol.16, pp.5, 2014, https://doi.org/10.1080/10286020.2014.913577
- Discovery of Neuritogenic Compound Classes Inspired by Natural Products vol.52, pp.36, 2013, https://doi.org/10.1002/anie.201302045
- Potential therapeutic action of natural products from traditional Chinese medicine on Alzheimer's disease animal models targeting neurotrophic factors vol.30, pp.6, 2016, https://doi.org/10.1111/fcp.12222
- Discovery of Neuritogenic Compound Classes Inspired by Natural Products vol.125, pp.36, 2013, https://doi.org/10.1002/ange.201302045