Inflammatory Pseudotumor in the Lateral Ventricle with Repeated Bleeding-Case Report-
-
- Journal of Korean Neurosurgical Society
- /
- v.45 no.2
- /
- pp.99-102
- /
- 2009
Inflammatory pseudotumor is an uncommon lesion with unknown etiology characterized by sclerosing inflammation which clinically and radiographically mimics a neoplastic lesion. A 47-year-old man presented with sudden headache and dysarthria. Brain CT scan revealed a
With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.
Manganese is an essential element in the body. It is mainly deposited in the liver and to a lesser degree in the basal ganglia of the brain and eliminated through the bile duct. Rapid turnover of managanese in the body makes it difficult to evaluate the manganese exposure in workers, esecially in those with irregular or intermittent exposure, like welders. Therefore, conventional biomarkers, including blood and urine manganese can provide only a limited information about the long-tern or cumulative exposure to manganese. Introduction of magnetic resonance imaging (MRI) made a progress in the assessment of manganese exposure in the medical conditions related to manganese accumulation, e. g. hepatic failure and long-term total parenteral nutrition. Manganese shortens spin-lattice(T1) relaxation time on MRI due to its paramagnetic property, resulting in high signal intensity (HSI) on T1-weighted image(T1W1) of MRI. Manganese deposition in the brain, therefore, can be visualizedas an HSI in the globus pallidus, the substantia nigra, the putamen and the pituitary. clinical and epidemiologic studies regarding the MRI findings in the cases of occupational and non-occupational manganese exposure were reviewed. relationships between HSI on T1W1 of MRI and age, gender, occupational manganese exposure, and neurological dysfunction were analysed. Relationships betwen biological exposure indices and HSI on MRE werealso reviewed. Literatures were reviewed to establish the relationships between HSI, Manganese deposition in the brain, pathologic findings, and neurological dysfunction. HSI on T1W1 of MRI reflects regional manganese deposition in the brain. This relationship enables an estimation of regional manganese deposition in the brain by analysing MR signal intensity. Manganese deposition in the brain can induce a neuronal loss in the basal ganglia but functional abnormality is supposed to be related to the cumulative exposure of manganese in the brain, use of brain MRI for the assessment of exposure in a group of workers seems to be hardly rationalized, while ti can be a useful adjunct for the evaluation of manganese exposure int he cases with suspected manganese-related health problems.
Purpose : This study was designed to evaluate the usefulness of 3T-TOF MR angiography (3T-TOF MRA) compared with transcranial Doppler sonography (TCD) and conventional angiography (CA) in patients with suspected cerebral infarction. Materials and Methods : Fifty four patients with clinical symptoms of cerebral infarction were involved in this study, and had undergone 3T-TOF MRA and TCD, with CA in 11 patients. On the basis of divisions of the carotid artery, four groups were designated: group I, both vertebral arteries and basilar artery; group II, segment between 2 cm below bifurcation of common carotid artery and genu portion of internal carotid artery; group III, segment between petrous portion of internal carotid artery and bifurcation of anterior and middle cerebral artery; group IV, from bifurcation of anterior and middle cerebral artery to thier distal branches. Two radiologists retrospectively reviewed the vascular imaging and stenosis in 3T-TOF MRA, TCD, and CA. Results : A total of 432 arteries, 108 in each group, were available. The assessment of vascular imaging quality in 3T-TOF MRA is scored 2.98, 2.96, 2.91, 2.88 in 4 groups, respectively. Agreement among 3T-TOF MR angiography, TCD, and CA was high. Conclusion : 3T-TOF MR angiography may be useful method for the assessment of stenotic lesions of cranial vasculature in patients with cerebral infarction.
After fifteen years of development, Magnetic Resonance (MR) technology for human imaging and spectroscopy is reaching a refined state with FDA approved 3T clinical products from Siemens, GE, and Philips. Broker has cleared CE approval with a 4T system. Varian supports a 4T system platform as well. Shielded magnets are standard at 3T from GE, Oxford, Magnex, and IGC. A shielded 4T whole body magnet is available from Oxford. Stronger switched gradients and dynamic shim coils, desired at any field, areespecially useful at higher static magnetic fields B0. In addition to the higher currents required for higher resolution slice or volume selection afforded by higher SNR, whole body gradient coils will be driven at increasing slew rates to meet the needs of new cardiac applications and other requirements. For example 3T and 4T systems are now being equipped with 2kV, 500A gradient coils and amplifiers capable of generating 4G/cm in 200msec, over a 67+/-cm bore diameter. High field EPI applications require oscillation rates at 1 kHz and higher. To achieve a benchmark 0.2 ppm shim over a 30cm sphere in a high field magnet, at least four stages of shimming need to be considered. 1) A good high field magnet will be built to a homogeneity spec. falling in the range of 100 to 150 ppm over this 30cm spherical "sweet spot" 2) Most modern high field magnets will also have superconducting shim coils capable of finding 1.5 ppm by their adjustment during system installation. 3) Passive ferro-magnetic shimming combined with 4) active, high order room temperature shim coils (as many as five orders are now being recommended) will accomplish 0.2 ppm over the 30cm sphere, and 0.1 ppm over a human brain in even the highest field magnets for human studies. Safety concerns for strong, fast gradients at any B0 field include acoustic noise and peripheral nerve stimulation. One or more of the mechanical decoupling methods may lead to quieter gradients. Patient positioning relative to asymmetric or short gradient coils may limit peripheral nerve stimulation at higher slew rates. Gradient designs combining a short coil for local speed and strength with a longer coil for coverage are being developed for 3T systems. Local gradients give another approach to maximizing performance over a limited region while keeping within the physiologically imposed dB0/dt performance limits.
Objectives : The aim of this study is to evaluate the sequential metabolic changes in experimental hydrocephalus and the clinical applicability to the diagnosis and prognosis of hydrocephalus using proton MR spectroscopy. Methods : Hydrocephalus was experimentally induced in 30 cats(2-3kg body weight) by injecting 1ml of sterile kaolin suspension(250mg/ml) into the cisterna magna. Proton MRS was performed with a 1.5 T MRI/MRS unit (Vision Plus, Siemens) at pre-treatment and at 1, 3, 7, 14, 21, and 28 days after the kaolin injection. PRESS(TR/TE=1500/270msec) technique was employed. The major metabolites which include N-acetyl aspartate (NAA), creatine(Cr), choline(Cho), and lactate(Lac) were quantitatively analyzed and the relative concentrations ratios were evaluated. Multislice
Purpose : A parallel imaging method provides us to improve temporal resolution to obtain three-dimensional (3D) MR images. The objective of this study was to optimize three 3D MRI techniques by adjusting 2D SESNE factors of the parallel imaging method in phantom and human brain. Materials and Methods : With a 3 Tesla MRI system and an 8-channel phase-array sensitivity-encoding (SENSE) coil, three 3D MRI techniques of 3D T1-weighted imaging (3D T1WI), 3D T2-weighted imaging (3D T2WI) and 3D fluid attenuated inversion recovery (3D FLAIR) imaging were optimized with adjusting SESNE factors in a water phantom and three human brains. The 2D SENSE factor was applied on the phase-encoding and the slice-encoding directions. Signal-to-noise ratio(SNR), percent signal reduction rate(%R), and contrast-to-noise ratio(CNR) were calculated by using signal intensities obtained in specific regions-of-interest (ROI). Results : In the phantom study, SENSE factor = 3 was provided in 0.2% reduction of signals against without using SENSE with imaging within 5 minutes for 3D T1WI. SENSE factor = 2 was provided in 0.98% signal reduction against without using SENSE with imaging within 5 minutes for 3D T2WI. SENSE factor = 4 was provided in 0.2% signal reduction against without using SENSE with imaging around 6 minutes for 3D FLAIR. In the human brain study, SNR and CNR were higher with SENSE factors = 3 than 4 for all three imaging techniques. Conclusion : This study was performed to optimize 2D SENSE factors in the three 3D MRI techniques that can be scanned in clinical time limitations with minimizing SNR reductions. Without compromising SNR and CNR, the optimum 2D SENSE factors were 3 and 4, yielding the scan time of about 5 to 6 minutes. Further studies are necessary to optimize 3D MRI techniques in other areas in human body.
The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70