The Present Status of Cell Tracking Methods in Animal Models Using Magnetic Resonance Imaging Technology

  • Kim, Daehong (Radiation Medicine Branch, National Cancer Center) ;
  • Hong, Kwan Soo (MRI Team, Korea Basic Science Institute) ;
  • Song, Jihwan (CHA Stem Cell Institute, Pochon CHA University College of Medicine)
  • Received : 2007.04.12
  • Accepted : 2007.04.13
  • Published : 2007.04.30

Abstract

With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.

Keywords

Acknowledgement

Supported by : Korea Food and Drug Administration

References

  1. Aime, S., Dastru, W., Crich, S. G., Gianolio, E., and Mainero, V. (2002) Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd (III) complexes. Biopolymers 66, 419−428
  2. Anderson, S. A., Shukaliak-Quandt, J., Jordan, E. K., Arbab, A. S., Martin, R., et al. (2004) Magnetic resonance imaging of labeled T cells in a mouse model of multiple sclerosis. Ann. Neurol. 55, 654−659
  3. Arbab, A. S., Yocum, G. T., Rad, A. M., Khakoo, A. Y., Fellowes, V., et al. (2005) Labeling of cells with ferumoxidesprotamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 18, 553−559
  4. Baik, M., Henninghausen, L., and Choi, Y. (1997) In situ localization of WDNM1 and ferritin heavy chain gene expression in mammary gland. Mol. Cells 7, 448−450
  5. Bandettini, P. A., Jesmanowicz, A., Wong, E. C., and Hyde, J. S. (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30, 161−173
  6. Blaimer, M., Breuer, F., Mueller, M., Heidemann, R. M., Griswold, M. A., et al. (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top. Magn. Reson. Imaging 5, 223−236
  7. Bruder, H., Fischer, H., Reinfelder, H. E., and Schmitt, F. (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn. Reson. Med. 23, 311−323
  8. Bulte, J. W. and Kraitchman, D. L. (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484−499
  9. Bulte, J. W., Douglas, T., Witwer, B., Zhang, S. C., Strable, E., et al. (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141−1147
  10. Bulte, J. W., Zhang, S., van. Gelderen, P., Herynek, V., Jordan, E. K., et al. (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 96, 15256−15261
  11. Clement, O., Siauve, N., Cuenod, C. A., and Frija, G. (1998) Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top. Magn. Reson. Imaging 9, 167−182
  12. Cohen, B., Ziv, K., Plaks, V., Israely, T., Kalchenko, V., et al. (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 13, 498−503
  13. Cunningham, C. H., Arai, T., Yang, P. C., McConnell, M. V., Pauly, J. M., et al. (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 53, 999−1005
  14. Daldrup-Link, H. E., Rudelius, M., Oostendorp, R. A., Jacobs, V. R., Simon, G. H., et al. (2005a) Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad. Radiol. 12, 502−510
  15. Daldrup-Link, H. E., Rudelius, M., Piontek, G., Metz, S., Brauer, R., et al. (2005b) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197−205
  16. de Vries, I. J., Lesterhuis, W. J., Barentsz, J. O., Verdijk, P., van Krieken, J. H., et al. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23, 1407−1413
  17. Farzaneh, F., Riederer, S. J., and Pelc, N. J. (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn. Reson. Med. 14, 123−139
  18. Foster-Gareau, P., Heyn, C., Alejski, A., and Rutt, B. K. (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Reson. Med. 49, 968−971
  19. Frank, J. A., Anderson, S. A., Kalsih, H., Jordan, E. K., Lewis, B. K., et al. (2004) Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6, 621−625
  20. Frank, J. A., Miller, B. R., Arbab, A. S., Zywicke, H. A., Jordan, E. K., et al. (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480−487
  21. Gillies, R. J. (2002) In vivo molecular imaging. J. Cell. Biochem. Suppl. 39, 231−238
  22. Harisinghani, M. G., Barentsz, J., Hahn, P. F., Deserno, W. M., Tabatabaei, S., et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491−2499
  23. Hauger, O., Delalande, C., Trillaud, H., Deminiere, C., Quesson, B., et al. (1999) MR imaging of intrarenal macrophage infiltration in an experimental model of nephrotic syndrome. Magn. Reson. Med. 41, 156−162
  24. Helm, L., Toth, E., and Merbach, A. E. (2003) Lanthanide ions as magnetic resonance imaging agents. Nuclear and electronic relaxation properties. Applications. Met. Ions. Biol. Syst. 40, 589−641
  25. Heyn, C., Bowen, C. V., Rutt, B. K., and Foster, P. J. (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn. Reson. Med. 53, 312−320
  26. Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., et al. (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA 99, 16267−16272
  27. Josephson, L., Tung, C. H., Moore, A., and Weissleder, R. (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10,186−191
  28. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290−2293
  29. Lauffer, R. B. (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem. Rev. 87, 901−907
  30. Lauterbur, P. C. (1973) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Nature 242, 190−191 https://doi.org/10.1038/242191a0
  31. Lauterbur, P. C., Mendonca, Dias. M. H., and Rudin, A. M. (1978) Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions; in Frontiers of Biological Energetics, Dutton, P., Leigh, J. S., and Scarpa, A. (eds.), pp. 752−759, Academic Press, New York
  32. Mani, V., Briley-Saebo, K. C., Itskovich, V. V., Samber, D. D., and Fayad, Z. A. (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn. Reson. Med. 55, 126−135
  33. Mansfield, P. (1977) Multi-planar image formation using NMR spin echos. J. Physics C10, L55–L58
  34. Matuszewski, L., Persigehl, T., Wall, A., Schwindt, W., Tombach, B., et al. (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155−161
  35. McLachlan, S. J., Morris, M. R., Lucas, M. A., Fisco, R. A., Eakins, M. N., et al. (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J. Magn. Reson. Imaging 4, 301−307
  36. Meldrum, F. C., Heywood, B. R., and Mann, S. (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257, 522−523
  37. Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E. J., et al. (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851−1858
  38. Modo, M., Hoehn, M., and Bulte, J. W. (2005) Cellular MR imaging. Mol. Imaging 4, 143−164
  39. Mori, S. and Zhang, J. (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527−539
  40. Mukherjee, P. and McKinstry, R. C. (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging. Clin. N. Am. 16,19−43
  41. Muller, F. J., Snyder, E. Y., and Loring, J. F. (2006) Gene therapy: can neural stem cell deliver? Nat. Rev. Neurosci. 7, 75−84
  42. Na, H. B., Lee, J. H., An, K., Park, Y. I., Park, M., et al. (2007) Development of a T(1) contrast agent for magnetic resonance iImaging using MnO nanoparticles. Angew. Chem. Int. Ed. Engl. Mar 13; Epub ahead of print
  43. Rausch, M., Baumann, D., Neubacher, U., and Rudin, M. (2002) In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed. 15, 278−283
  44. Reimer, P., Marx, C., Rummeny, E. J., Muller, M., Lentschig, M., et al. (1997) SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual comparison. J. Magn. Reson. Imaging 7, 945−949
  45. Rogers, W. J., Meyer, H., and Kramer, C. M. (2006) Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Prac. 3, 554−562
  46. Ruehm, S. G., Corot, C., Vogt, P., Kolb, S., and Debatin, J. F. (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415−422
  47. Shapiro, E. M., Skrtic, S., Sharer, K., Hill, J. M., Dunbar, C. E., et al. (2004) MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 101, 10901−10906
  48. Shapiro, E. M., Sharer, K., Skrtic, S., and Koretsky, A. P. (2006) In vivo detection of single cells by MRI. Magn. Reson. Med. 55, 242−249
  49. Song, H., Kwon, K., Lim, S., Kang, S. M., Ko, Y. G., et al. (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol. Cells 19, 402−407
  50. Stark, D. D., Weissleder, R., Elizondo, G., Hahn, P. F., Saini, S., et al. (1988) Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297−301
  51. Taupitz, M., Wagner, S., Schnorr, J., Kravec, I., Pilgrimm, H., et al. (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol. 39, 394−405
  52. Turner, R., Howseman, A., Rees, G. E., Josephs, O., and Friston, K. (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp. Brain. Res. 123, 5−12
  53. Weissleder, R. (1994) Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 193, 593−595
  54. Zitvogel, L. and Tursz, T. (2005) In vivo veritas. Nat. Biotechnol. 23, 1372−1374 https://doi.org/10.1038/nbt1105-1374