• Title/Summary/Keyword: Brain MR studies

Search Result 50, Processing Time 0.024 seconds

Postcontrast T1-weighted Brain MR Imaging in Children: Comparison of Fat-suppressed Imaging with Conventional or Magnetization Transfer Imaging

  • 이충욱;구현우;최충곤
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.37-37
    • /
    • 2003
  • To assess the merits and demerits of postcontrast fat-suppressed (FS) brain MR imaging in children in the evaluation of various enhancing lesions, compared with postcontrast conventional or Magnetization Transfer (MT) imaging. 대상 및 방법: We reviewed patients with enhancing lesion on brain MR imaging who underwent both FS imaging and one of conventional or MT imaging as a postcontrast T1-weighted brain MR imaging. Inclusion criteria of our study were as follows: MR studies should be peformed within one-year interval and showed no significant interval change of imaging findings. Thirty-four patients (21 male, 13 female; mean age, 8 years) with 43 enhancing lesions (19 intra-axial, 19 extra-axial, and 5 orbital location) were included in this study, Twenty-one pairs of FS and conventional imaging, and 15 pairs of FS and MT imaging were available. Two radiologists visually assessed the lesion conspicuity and the presence of flow or susceptibility artifacts in a total of 36 pairs of MR imaging by consensus. For 21 measurable lesions (19 pairs of FS and conventional imaging, 5 pairs of FS and MR imaging), contrast ratio between the lesion and the normal brain( [SIlesion-SIwater]/[SInormal brain-SIwater]) were calculated and compared.

  • PDF

Blood-Brain Barrier Experiments with Clinical Magnetic Resonance Imaging and an Immunohistochemical Study

  • Park, Jun-Woo;Kim, Hak-Jin;Song, Geun-Sung;Han, Hyung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Objective : The purpose of study was to evaluate the feasibility of brain magnetic resonance (MR) images of the rat obtained using a 1.5T MR machine in several blood-brain barrier (BBB) experiments. Methods : Male Sprague-Dawley rats were used. MR images were obtained using a clinical 1.5T MR machine. A microcatheter was introduced via the femoral artery to the carotid artery. Normal saline (group 1, n = 4), clotted autologous blood (group 2, n = 4), triolein emulsion (group 3, n = 4), and oleic acid emulsion (group 4, n = 4) were infused into the carotid artery through a microcatheter. Conventional and diffusion-weighted images, the apparent coefficient map, perfusion-weighted images, and contrast-enhanced MR images were obtained. Brain tissue was obtained and triphenyltetrazolium chloride (TTC) staining was performed in group 2. Fluorescein isothiocyanate (FITC)-labeled dextran images and endothelial barrier antigen (EBA) studies were performed in group 4. Results : The MR images in group 1 were of good quality. The MR images in group 2 revealed typical findings of acute cerebral infarction. Perfusion defects were noted on the perfusion-weighted images. The MR images in group 3 showed vasogenic edema and contrast enhancement, representing vascular damage. The rats in group 4 had vasogenic edema on the MR images and leakage of dextran on the FITC-labeled dextran image, representing increased vascular permeability. The immune reaction was decreased on the EBA study. Conclusion : Clinical 1.5T MR images using a rat depicted many informative results in the present study. These results can be used in further researches of the BBB using combined clinical MR machines and immunohistochemical examinations.

Localized Proton MR Spectroscopic Detection of Nonketotic Hyperglycinemia in an Infant

  • Choong-Gon Choi;Ho Kyu Lee;Jong-Hyun Yoon
    • Korean Journal of Radiology
    • /
    • v.2 no.4
    • /
    • pp.239-242
    • /
    • 2001
  • Nonketotic hyperglycinemia (NKH) is a rare metabolic brain disease caused by deficient activity of the glycine cleveage system. Localized proton MR spectroscopy (echo-time 166 msec), performed in an infant with the typical clinical and biochemical features of neonatal NKH, showed a markedly increased peak intensity at 3.55 ppm, which was assigned to glycine. Serial proton MR spectrosocpic studies indicated that glycine/choline and glycine/total creatine ratios correlated closely with the patient's clinical course. Proton MR spectroscopy was useful for the non-invasive detection and monitoring of cerebral glycine levels in this infant with NKH.

  • PDF

A Variational Model For Longitudinal Brain Tissue Segmentation

  • Tang, Mingjun;Chen, Renwen;You, Zijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3479-3492
    • /
    • 2022
  • Longitudinal quantification of brain changes due to development, aging or disease plays an important role in the filed of personalized-medicine applications. However, due to the temporal variability in shape and different imaging equipment and parameters, estimating anatomical changes in longitudinal studies is significantly challenging. In this paper, a longitudinal Magnetic Resonance(MR) brain image segmentation algorithm proposed by combining intensity information and anisotropic smoothness term which contain a spatial smoothness constraint and longitudinal consistent constraint into a variational framework. The minimization of the proposed energy functional is strictly and effectively derived from a fast optimization algorithm. A large number of experimental results show that the proposed method can guarantee segmentation accuracy and longitudinal consistency in both simulated and real longitudinal MR brain images for analysis of anatomical changes over time.

Thromboembolic Events after Coil Embolization of Cerebral Aneurysms : Prospective Study with Diffusion-Weighted Magnetic Resonance Imaging Follow-up

  • Chung, Seok-Won;Baik, Seung-Kug;Kim, Yong-Sun;Park, Jae-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.6
    • /
    • pp.275-280
    • /
    • 2008
  • Objective : In order to assess the incidence of thromboembolic events and their clinical presentations, the present study prospectively examined routine brain magnetic resonance images (MRI) taken within 48 hours after a coil embolization of cerebral aneurysms. Methods : From January 2006 to January 2008, 163 cases of coil embolization of cerebral aneurysm were performed along with routine brain MRI, including diffusion-weighted magnetic resonance (DW-MR) imaging, within 48 hours after the embolization of the aneurysm to detect the silent thromboembolic events regardless of any neurological changes. If any neurological changes were observed, an immediate brain MRI follow-up was performed. High-signal-intensity lesions in the DW-MR images were considered as acute thromboembolic events and the number and locations of the lesions were also recorded. Results : Among the 163 coil embolization cases, 98(60.1%) showed high-signal intensities in the DW-MR imaging follow-up, 66 cases (67.0%) involved the eloquent area and only 6cases (6.0%) showed focal neurological symptoms correlated to the DW-MR findings. The incidence of DW-MR lesions was higher in older patients (${\geq}60$ yrs) when compared to younger patients (<60 yrs) (p=0.002, odd's ratio=1.043). The older patients also showed a higher incidence of abnormal DW-MR signals in aneurysm-unrelated lesions (p=0.0003, odd's ratio=5.078). Conclusion : The incidence of symptomatic thromboembolic attacks after coil embolization of the cerebral aneurysm was found to be lower than that reported in previous studies. While DW-MR imaging revealed a higher number of thromboembolic events, most of these were clinically silent and transient and showed favorable clinical outcomes. However, the incidence of DW-MR abnormalities was higher in older patients, along with unpredictable thromboembolic events on DW-MR images. Thus, in order to provide adequate and timely treatment and to minimize neurological sequelae, a routine DW-MR follow-up after coil embolization of cerebral aneurysms might be helpful, especially in older patients.

MR Findings of Hypoxic Brain Damage: Relation to Time Elapse and Prognosis of Patients (저산소성 뇌손상의 자기공명영상 소견: 유병기간 및 예후와의 연관성)

  • Suh, Kyung-Jin;Kang, Chae-Hoon;Yoo, Dong-Soo;Kim, Sang-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.8-15
    • /
    • 2006
  • Purpose : To describe MR imaging features of hypoxic brain damage in relation to time elapse and prognosis of patients. Materials and methods : We reviewed 19 MR studies of 18 patients with hypoxic brain damage. MR imaging studies were performed between 1 to 20 days after the hypoxic insults (mean 8.6 days). MR images were analyzed with regard to the locations of abnormal signal intensities, the presence of brain edema. And imaging findings were correlated with the time elapse after the insults and the prognosis of patients. Results : On 19 cases of MR studies, abnormal high intensities on T2-weighted images were found in the basal ganglia (15, 78.9%), cerebral cortex (13, 68.4%), white matter (9, 47.4%), thalamus (6, 31.6%), cerebellum (4, 21.1%) and brainstem (1, 5.3%), respectively. Cerebral cortical involvement was typically bilateral and diffuse, but sometimes limited to the parieto-occipital area. The brainstem and cerebellar involvement was rare and in all cases, cerebral cortical lesions accompanied. Most of the white matter lesions were accompanied with cortical and deep gray matter lesions and found in subacute period(>6 days). The cortical high signal intensity lesions on T1-weighted image were found mostly in subacute stage, but in some cases involvement was also found in acute stage ($\leq$ 6 days). The cortical edema is found on 11 cases in acute and subacute stages. In cases of recovered consciousness, cortical involvement and edema on MR were rare. Conclusion : MR findings of hypoxic brain damage were various, but diffuse bilateral involvement of cortex and/or deep gray matter was found in most of the cases. White matter involvement was rarely found in acute stage and usually found in subacute stage. In cases of good pronosis, cortical involvement and edema were rare.

  • PDF

Comparison of Pre-processed Brain Tumor MR Images Using Deep Learning Detection Algorithms

  • Kwon, Hee Jae;Lee, Gi Pyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • Detecting brain tumors of different sizes is a challenging task. This study aimed to identify brain tumors using detection algorithms. Most studies in this area use segmentation; however, we utilized detection owing to its advantages. Data were obtained from 64 patients and 11,200 MR images. The deep learning model used was RetinaNet, which is based on ResNet152. The model learned three different types of pre-processing images: normal, general histogram equalization, and contrast-limited adaptive histogram equalization (CLAHE). The three types of images were compared to determine the pre-processing technique that exhibits the best performance in the deep learning algorithms. During pre-processing, we converted the MR images from DICOM to JPG format. Additionally, we regulated the window level and width. The model compared the pre-processed images to determine which images showed adequate performance; CLAHE showed the best performance, with a sensitivity of 81.79%. The RetinaNet model for detecting brain tumors through deep learning algorithms demonstrated satisfactory performance in finding lesions. In future, we plan to develop a new model for improving the detection performance using well-processed data. This study lays the groundwork for future detection technologies that can help doctors find lesions more easily in clinical tasks.

MR-based Partial Volume Correction for $^{18}$F-PET Data Using Hoffman Brain Phantom

  • Kim, D. H.;Kim, H. J.;H. K. Jeong;H. K. Son;W. S. Kang;H. Jung;S. I. Hong;M. Yun;Lee, J. D.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.322-323
    • /
    • 2002
  • Partial volume averaging effect of PET data influences on the accuracy of quantitative measurements of regional brain metabolism because spatial resolution of PET is limited. The purpose of this study was to evaluate the accuracy of partial volume correction carried out on $^{18}$ F-PET images using Hoffman brain phantom. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices of the same phantom. All the MR slices of the phantom were then segmented to be binary images. Each of these binary images was convolved in 2 dimensions with the spatial resolution of the PET. The original PET images were then divided by the smoothed binary images in slice-by-slice, voxel-by-voxel basis resulting in larger PET image volume in size. This enlarged partial volume corrected PET image volume was multiplied by original binary image volume to exclude extracortical region. The evaluation of partial volume corrected PET image volume was performed by region of interests (ROI) analysis applying ROIs, which were drawn on cortical regions of the original MR image slices, to corrected and original PET image volume. From the ROI analysis, range of regional mean values increases of partial volume corrected PET images was 4 to 14%, and average increase for all the ROIs was about 10% in this phantom study. Hoffman brain phantom study was useful for the objective evaluation of the partial volume correction method. This MR-based correction method would be applicable to patients in the. quantitative analysis of FDG-PET studies.

  • PDF

Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom (뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Accuracy of registration between images acquired from various medical image modalities is one of the critical issues in radiation treatment planing. In this study, a method of accuracy evaluation of image registration using a homemade brain phantom was investigated. Chamfer matching of CT-MR and CT-SPECT imaging was applied for the multimodal image registration. The accuracy of image correlation was evaluated by comparing the center points of the inserted targets of the phantom. The three dimensional root-mean-square translation deviations of the CT-MR and CT-SPECT registration were 2.1${\pm}$0.8 mm and 2.8${\pm}$1.4 mm, respectively. The rotational errors were < 2$^{\circ}$ for the three orthogonal axes. These errors were within a reasonable margin compared with the previous phantom studies. A visual inspection of the superimposed CT-MR and CT- SPECT images also showed good matching results.

Neuroactivation studies using Functional Brain MRI (기능적 자기공명영상을 이용한 뇌활성화 연구)

  • Chung, Kyung-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.