• Title/Summary/Keyword: Brain

Search Result 11,069, Processing Time 0.043 seconds

Effects of Silkworm(Bombyx mori L.) Power on Oxidative Stress and Membrane Fluidity in Brain of SD Rats (뇌조직의 산화적 스트레스 및 세포막 유동성에 미치는 누에분말의 영향)

  • 최진호;김대익;박수현;김정민;조원기;이희삼;류강선
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • This study was designed to investigate the effects of silkworm(Bombyx moril L.) powder on oxidative stress and membrane fluidity in brain membranes of rats. Sprague-Dawley(SD) male rats(160$\pm$10 g) were fed basic diet(control group), and experimental diets(SWP-200 and SWP-400 groups) added 200 and 400mg/kg BW/day for 6 weeks. There were no significant differences in cholesterol levels of brain memberanes by administration of silkworm powder (SWP). Membrane fluidities were significantly increased(21.5% and 30.8%, respectively) in brain mitochondria of SWP-200 and SWP-400 groups compared with control group, but significant difference between brain microsomes could not obtained. Basal oxygen radicals (BORs) in brain mitochondria and mircrosomes were significantly inhibited(8.5% and 16.5%, 16.8%and 24.8%, respectively) by SWP-200 and SEP-400 groups compared with control group. Induced oxygen radicals(IORs) in brain mitochondria were significantly inhibited(16.6% and 21.4%, respectively)by sWP-200 and SWP-400 groups compared with control group, but IOR in brain microsome were significantly inhibited about 16.0% by SWP-400 groups only compared with control group. Lipid peroxide(LPO) levels were significantly decreaed(14.8%and 22.4%, respectively) in brain mitochondria of SWP-200 and SWP-400 groups compared with control group, but LPO level was significantly decreased about 16.0% in brain microsome of SWP-400 group only. Oxidized protein(OP) levels were remarkably decreased(about 14.8% and 16.5%, respectively) in brain mitochondria of SWP-200 and SWP-400 groups, but OP level was significantly decreased about 13.0% in brain microsome of SWP-400 group only compared with control group, Theses results suggest that administration of in brain microsome of SWP-400 group only compared with control group. These results suggest that administration of SWP may play effective role in attenuating an oxidative stress and increasing a membrane fluidity in brain membranes.

  • PDF

Preventing Extracellular Diffusion of Trigeminal Nitric Oxide Enhances Formalin-induced Orofacial Pain

  • Jung, Hwi-Seok;Jeon, Hong-Bin;Jeon, Ik-Sung;Lee, Bum-Jun;Yoo, Hyun-Woo;Ahn, Dong-Kuk;Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.379-383
    • /
    • 2009
  • Nitric oxide (NO), a diffusible gas, is produced in the central nervous system, including the spinal cord dorsal horn and the trigeminal nucleus, the first central areas processing nociceptive information from periphery. In the spinal cord, it has been demonstrated that NO acts as pronociceptive or antinociceptive mediators, apparently in a concentration-dependent manner. However, the central role of NO in the trigeminal nucleus remains uncertain in support of processing the orofacial nociception. Thus, we here investigated the central role of NO in formalin (3%)-induced orofacial pain in rats by administering membrane-permeable or -impermeable inhibitors, relating to the NO signaling pathways, into intracisternal space. The intracisternal pretreatments with the NO synthase inhibitor L-NAME, the NO-sensitive guanylate cyclase inhibitor ODQ, and the protein kinase C inhibitor GF109203X, all of which are permeable to the cell membrane, significantly reduced the formalin-induced pain, whereas the membrane-impermeable NO scavenger PTIO significantly enhanced it, compared to vehicle controls. These data suggest that an overall effect of NO production in the trigeminal nucleus is pronociceptive, but NO extracellularly diffused out of its producing neurons would have an antinociceptive action.

Analysis of factors involved in brain-death donor processing for face transplantation in Korea: How much time is available from brain death to transplantation?

  • Hong, Jong Won;Chung, Soon Won;Ahn, Sung Jae;Lee, Won Jai;Lew, Dae Hyun;Kim, Yong Oock
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.405-413
    • /
    • 2019
  • Background Face transplantation has naturally evolved from reconstructive procedures. However, few institutions perform face transplantations, because it is time-consuming and it is necessary to justify non-vital organ transplantation. We investigated the process of organ donation from brain-dead patients and the possibility of incorporating face transplantation into the donation process. Methods A retrospective review was performed of 1,074 brain-dead patients from January 2015 to December 2016 in Korea. We analyzed the time intervals from admission to brain death decisions (first, second, and final), the causes of brain death, and the state of the transplanted organs. Results The patient base (n=1,074) was composed of 747 males and 327 females. The average period between admission to the first brain death decision was 8.5 days (${\pm}15.3$). The average time intervals between the first brain death decision and medical confirmation using electroencephalography and between the first brain death decision and the final determination of brain death were 16 hours 58 minutes (${\pm}14hours$ 50 minutes) and 22 hours 57 minutes (${\pm}16hours$ 16 minutes), respectively. The most common cause of brain death was cerebral hemorrhage/stroke (42.3%), followed by hypoxia (30.1%), and head trauma (25.2%). Conclusions When face transplantation is performed, the transplantation team has 22 hours 57 minutes on average to prepare after the first brain death decision. The cause of brain death was head trauma in approximately one-fourth of cases. Although head trauma does not always imply facial trauma, surgeons should be aware that the facial tissue may be compromised in such cases.

The Effects of Brain Education Based on Learning Camp Program for Children's self-directed learning ability and attitude (뇌교육 기반 학습캠프 프로그램이 아동의 자기주도적 학습 능력 및 태도에 미치는 영향)

  • Shin, Jae-Han;Kim, Hye-Seon;Kim, Jin-A
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.477-485
    • /
    • 2018
  • The aim of this study was to improve the 'self-directed learning ability and attitudeselementary school students by applying a brain education-based learning program based on brain science in the form of a short term camp in consideration of the elementary school students' brain characteristics and mechanisms. For this purpose, this study was conducted on 4, 5, and 6 elementary school students in Korea. The brain training based learning camp program was conducted for two nights and three days. The camps were conducted twice from February 3 to 5, 2017 with 45 students from grade 6 and from February 22 to July 24, 2017, with 56 students from grades 4 and 5, 101 students in total. The conclusions of this study are as follows. The brain education-based learning camp program was found to be effective in improving the elementary school students' self-directed learning ability and learning attitude. First, the brain education-based learning camp program can increase the learning concentration through brain gymnastics, breathing, and meditation. Second, brain training called 'Brain Screen' among the brain education-based learning camp program can improve the brain ability of memory. Third, it can establish a self - directed learning philosophy of 'My study is done by me' by giving reason and motivation to study through the brain education-based learning camp program.

Detection of Brain Metastatses Using Limited Brain MR Imaging : Usefulness of Limited Contrast-Enhanced MR Imaging in Brain Metastasis (뇌전이암 진단을 위한 제한적 뇌 자기공명영상의 유용성에 관한 연구)

  • Kwon, Sun Jung;Lee, Yun Sun;An, Jin Yong;Park, Hee Sun;Jung, Sung Soo;Kim, Ju Ock;Kim, Jin Hwan;Song, Chang Joon;Kim, Sun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.499-505
    • /
    • 2003
  • Background : The brain is a common site of a metastasis in lung cancer patients. If left untreated, the patients succumb to progressive neurological deterioration with a lower survival rate than with other metastases sites. Contrast-enhanced MR imaging in the absence of symptoms or clinical signs is not recommended for identifying a cerebral metastasis in lung cancer patients because of management effectiveness. This pilot study was performed to estimate whether or not limited brain MR imaging, which has a lower cost, could be used to replace conventional brain MR imaging. Method : Between April 1999 and March 2001, 43 patients with a primary lung cancer and the others (breast cancer, stomach cancer, colon cancer, malignant melanoma etc), who had neurological symptoms and signs, were examined using conventional brain MR imaging to examine brain metastases. The control group involved four patients who had no evidence of brain metastases the sensitivity, specificity and correlation of limited brain MR imaging were compared with conventional brain MR imaging. Results : All the 43 patients who were examined with conventional brain MR imaging showed evidence of brain metastases, whereas limited brain MR imaging indicated that 42 patients had brain metastases(sensitivity=97.67%). One patient in whom limited brain MR imaging showed no brain metastasis had a metastasis in the cerebellum, as shown by the contrast-enhanced T1 weighted axial view using conventional brain MR imaging. The conventional brain MR imaging and the limited brain MI imaging of the 4 control patients both indicated no brain metastases (specificity=100 %). The Pearson Correlation of the two groups was 0.884(Confidence Interval : 99%) observed. Conclusion : Limited brain MR imaging can detect a brain metastasis with the same accuracy. In addition, it is cost-effective (229,000 won, 180$) compared to conventional brain MR imaging(529,000 won, 480$) when patients had neurological symptoms and signs or staging.

Effect of the Brain Death on Hemodynamic Changes and Myocardial Damages in Canine Brain Death Model -Electrocard iographic and Hemodynamic Changes in the Brain Death Model Induced by Gradual Increase of Intracranial Pressure- (잡견을 이용한 실험적 뇌사모델에서 뇌사가 혈역학적 변화와 심근손상에 미치는 영향 -제2보 : 뇌압을 점진적으로 증가시켜 유발한 뇌사모델의 심전도 및 혈역학적 변화-)

  • 조명찬;이동운
    • Journal of Chest Surgery
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • We developed an experimental model of brain death using dogs. Brain death was induced by increasing the intracranial pressure (ICP) gradually by continuous Infusion of saline through an epidural Foley catheter in 5 mongrel dogs (weight, 18~22kg). Hemodynamic and electrocardiographic changes were evaluated continuously during the process of brain death and obtained the following results. 1. The average volume and time required to induce brain death was 4.8$\pm$1.0ml and 143.0$\pm$30.9minutes respectively. 2. There was a steady rise of the ICP after starting the constant infusion of saline, and ICP rised continuously until the brain death (122.0$\pm$62.5mmHg). After reaching to the maximal value (125.0$\pm$47.7mmHg) at 30 minutes after brain death, the ICP dropped and remained approximately constant at the slightly higher level than the mean arterial pressure (MAP). 3. MAP showed no change until the establishment of brain death and it declined gradually. The peak heart rate reached to 172.6$\pm$35.3/min at 30 minutes after the brain death. 4. Even though the body temperature and all hemodynamic variables, such as cardiac output, mean pulmonary arterial pressure, left ventricular (LV) end-diastolic pressure and LV maximum + dp/dt, were slightly greater than those of basal state, at the point of brain death, there was no statistically significant change during t e process of brain death. 5. There was no remarkable arrhythmias during the experiment except ventricular premature beats which was observed transiently in one dog at the time of brain death. Hemodynamic changes in the brain death model induced by gradual ICP increment were inconspicuous, and arrhythmias were rarely seen. Hyperdynamic state, which was observed at the point of brain death in another brain death model caused by abrupt ICP increase, was not observed.

  • PDF

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Effects of Gastrodiae Rhizoma on Brain Edema and Aquaporin Expressions Following Intracerebral Hemorrhage in Rats (천마(天麻)가 뇌조직출혈(腦組織出血) 흰쥐의 뇌부종(腦浮腫)과 Aquaporins 발현에 미치는 영향)

  • Lee, Ju-Yong;Ku, Ja-Seung;Lee, Dong-Eun;Shin, Jung-Won;Kim, Seung-Joon;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.85-93
    • /
    • 2010
  • Objectives : This study aimed at evaluation of the effects of Gastrodiae Rhizoma on brain edema and aquaporin water channel expressions in the brain. Methods : Brain edema following intracerebral hemorrhage (ICH) was induced by the stereotaxic intrastriatal injection of bacterial collagenase type VII in Sprague-Dawley rats. Then ethanol extract of Gastrodiae rhizoma was treated once a day for 3 days. Brain edema % and water contents, and cell size of neurons in the cerebral cortex were examined. Immuno-histochemistry was processed for AQP4, AQP1, and AQP9 expressions in the brain sections and area % of immuno-labeling was analyzed with image analysis. Results : 1. Ethanol extract of Gastrodiae Rhizoma reduced brain edema of ICH induced rats significantly. 2. Ethanol extract of Gastrodiae Rhizoma reduced excessive brain tissue water contents of ICH induced rats significantly. 3. Ethanol extract of Gastrodiae Rhizoma reduced cellular edema of neurons in cerebral cortex of ICH induced rats significantly. 4. Ethanol extract of Gastrodiae Rhizoma reduced AQP4 immuno-positive area % in cerebral cortex and external capsule of ICH induced rat brain significantly. 5. Ethanol extract of Gastrodiae Rhizoma reduced AQP9 immuno-positive area % in glia limitans externa of ICH induced rat brain significantly. Conclusions : These results suggest that Gastrodiae Rhizoma reveals protective effects against brain edema and cytotoxic edema of neurons by means of down-regulation of AQP4 expression in the brain.

Brain-based Learning Science: What can the Brain Science Tell us about Education? (뇌기반 학습과학: 뇌과학이 교육에 대해 말해 주는 것은 무엇인가?)

  • Kim, Sung-Il
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.4
    • /
    • pp.375-398
    • /
    • 2006
  • Humans learn by observing, hearing, imitating, doing, and feeling. The brain(cortex) is the central tore of this process. The recent rapid progress of brain science and the active interdisciplinary collaboration between brain science and cognitive science opens a new possibility. That is a new research Held called 'Brain-Based learning Science', 'Edutational Neuroscienre', or 'NeuroEduration' This study reviews the nature and basic assumptions of brain-based learning science, current directions in educational neuroscience research, the neuro-myths, educational implications of neuroscience, and a possibility of making a meaningful connection between brain science and education. Also the future prospects and limitations of the brain-based learning science are discussed.

  • PDF

Accelerated Evolution of the Regulatory Sequences of Brain Development in the Human Genome

  • Lee, Kang Seon;Bang, Hyoeun;Choi, Jung Kyoon;Kim, Kwoneel
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2020
  • Genetic modifications in noncoding regulatory regions are likely critical to human evolution. Human-accelerated noncoding elements are highly conserved noncoding regions among vertebrates but have large differences across humans, which implies human-specific regulatory potential. In this study, we found that human-accelerated noncoding elements were frequently coupled with DNase I hypersensitive sites (DHSs), together with monomethylated and trimethylated histone H3 lysine 4, which are active regulatory markers. This coupling was particularly pronounced in fetal brains relative to adult brains, non-brain fetal tissues, and embryonic stem cells. However, fetal brain DHSs were also specifically enriched in deeply conserved sequences, implying coexistence of universal maintenance and human-specific fitness in human brain development. We assessed whether this coexisting pattern was a general one by quantitatively measuring evolutionary rates of DHSs. As a result, fetal brain DHSs showed a mixed but distinct signature of regional conservation and outlier point acceleration as compared to other DHSs. This finding suggests that brain developmental sequences are selectively constrained in general, whereas specific nucleotides are under positive selection or constraint relaxation simultaneously. Hence, we hypothesize that human- or primate-specific changes to universally conserved regulatory codes of brain development may drive the accelerated, and most likely adaptive, evolution of the regulatory network of the human brain.