• Title/Summary/Keyword: Brain, metabolism

Search Result 295, Processing Time 0.032 seconds

EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway

  • Cai, Yi;Zhao, Li;Qin, Yuan;Wu, Xiao-Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.203-210
    • /
    • 2015
  • AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

Clinical Evaluation of Bromovincamine for Cerebral Stroke (뇌졸중 환자에서의 Brovincamine의 임상효과)

  • 김준석;서홍석;오동주;임도선
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.84-88
    • /
    • 1993
  • Brovincamine is a selective cerebral vasodilator that was apparently produced via a slow calcium blockade. Brovincamine has been shown to increase ATP production and glucose and oxygen consumption in brain, improving energy metabolism. Also brovincamine inhibited platelet aggregation induced by ADP and collagen in vivo and in vitro via an increase of cAMP concentration, promoting therapeutic effects on cerebral circulatory disorders. So we investigated and represented the clinical effects and safety of brovincamine in patients with cerebral stroke. Thirty patients of cerebral stroke that was older than 2 months, who were 22 cases of cerebral infarction, 6 of cerebral embolism that originated from carebral infarction, 6 of cerebral embolism that originated from cardiac diseases, and 2 of cerebral embolism that originated from cardiac diseases, and 2 of cerebral hemorrhage, were administered of 20 mg of oral brovincamine three times daily for 8 weeks. Improvement rates of each symptom after 8 week administration were 30.8% for subjective symptoms, 76% for psychiatric symptoms and 65.6% for neurologic symptoms. In final global improvement rates, much improvement was 10%, improvement was 23.3% slight improvement is 36.7%, and no change was 30%. So global improvement rate including slight improvement was 70%. As for side effects, there were 3 cases of mild gastrointestinal symptoms, but there were no other subjective side effects and significant fluctuation in laboratory examination. Conclusively throughout the present study, brovincamine is judged to be well tolerated and effective in patients with cerebral stroke.

  • PDF

Differential Effects of Two Period Genes on the Physiology and Proteomic Profiles of Mouse Anterior Tibialis Muscles

  • Bae, Kiho;Lee, Kisoo;Seo, Younguk;Lee, Haesang;Kim, Dongyong;Choi, Inho
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • The molecular components that generate and maintain circadian rhythms of physiology and behavior in mammals are present both in the brain (suprachiasmatic nucleus; SCN) and in peripheral tissues. Examination of mice with targeted disruptions of either mPer1 or mPer2 has shown that these two genes have key roles in the SCN circadian clock. Here we show that loss of the clock gene mPer2 affects forced locomotor performance in mice without altering muscle contractility. A proteomic analysis revealed that the anterior tibialis muscles of the mPer2 knockout mice had higher levels of glycolytic enzymes such as triose phosphate isomerase and enolase than those of either the wild type or mPer1 knockout mice. In addition, the level of expression of HSP90 in the mPer2 mutant mice was also significantly higher than in wildtype mice. These results suggest that the reduced locomotor endurance of the mPer2 knockout mice reflects a greater dependence on anaerobic metabolism under stress conditions, and that the two canonical clock genes, mPer1 and mPer2, play distinct roles in the physiology of skeletal muscle.

Taste-Active and Nutritional Components of Thai Native Chicken Meat: A Perspective of Consumer Satisfaction

  • Lengkidworraphiphat, Phatthawin;Wongpoomchai, Rawiwan;Bunmee, Thanaporn;Chariyakornkul, Arpamas;Chaiwang, Niraporn;Jaturasitha, Sanchai
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.237-246
    • /
    • 2021
  • The taste-active and nutritional components of Thai native, broilers, black-boned, and spent hen chickens were analyzed. The amounts of tasty amino acids especially glutamic acid were the highest in Thai native chicken. The black-boned chicken had the highest arginine content, related to the least amount of consumer satisfaction. Concerning nutritional quality, choline, and taurine were deemed important for brain function. The black-boned chicken showed the highest choline and taurine contents, unlike that of the spent hens. In contrast, broilers presented the highest betaine content, which might be attributed to their lipid metabolism. L-carnitine content was abundant in black-boned and Thai native chickens. Moreover, the amounts of essential amino acids were high in Thai native chicken. In conclusion, black-boned chicken proved to be an excellent nutritional source for health-conscience consumers, whereas the Thai native chickens were flavourful and delicious.

Sulforaphene Attenuates Cutibacterium acnes-Induced Inflammation

  • Hwan Ju Hwang;Jong-Eun Kim;Ki Won Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1390-1395
    • /
    • 2022
  • Acne is a chronic inflammatory disease of the sebaceous gland attached to the hair follicles. Cutibacterium acnes is a major cause of inflammation caused by acne. It is well known that C. acnes secretes a lipolytic enzyme to break down lipids in sebum, and free fatty acids produced at this time accelerate the inflammatory reaction. There are several drugs used to treat acne; however, each one has various side effects. According to previous studies, sulforaphene (SFEN) has several functions associated with lipid metabolism, brain function, and antibacterial and anti-inflammatory activities. In this study, we examined the effects of SFEN on bacterial growth and inflammatory cytokine production induced by C. acnes. The results revealed that SFEN reduced the growth of C. acnes and inhibited proinflammatory cytokines in C. acnes-treated HaCaT keratinocytes through inhibiting NF-κB-related pathways. In addition, SFEN regulated the expression level of IL-1α, a representative pro-inflammatory cytokine expressed in co-cultured HaCaT keratinocytes and THP-1 monocytes induced by C. acnes. In conclusion, SFEN showed antibacterial activity against C. acnes and controlled the inflammatory response on keratinocytes and monocytes. This finding means that SFEN has potential as both a cosmetic material for acne prevention and a pharmaceutical material for acne treatment.

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang;Ya-E, Zhao;Ji-dong, Wei;Yu-fan, Lu;Ying, Zhang;Ya-lun, Sun;Meng-Yu, Ma;Rui-ling, Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1883-1895
    • /
    • 2018
  • Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

A Case of Glutaric Aciduria Type I with Macrocephaly (Glutaric Aciduria Type I 1례)

  • Shin, Woo Jong;Moon, Yeo Ok;Yoon, Hye Ran;Dong, Eun Sil;Ahn, Young Min
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.3
    • /
    • pp.295-301
    • /
    • 2003
  • Glutaric aciduria type 1(GA1) is an autosomal recessive disorder of the lysine, hydroxylysine and tryptophan metabolism caused by the deficiency of mitochondrial glutaryl-CoA dehydrogenase. This disease is characterized by macrocephaly at birth or shortly after birth and various neurologic symptoms. Between the first weeks and the 4-5th year of life, intercurrent illness such as viral infections, gastroenteritis, or even routine immunizations can trigger acute encephalopathy, causing injury to caudate nucleus and putamen. But intellectual functions are well preserved until late in the disease course. We report a one-month-old male infant with macrocephaly and hypotonia. In brain MRI, there was frontotemporal atrophy(widening of sylvian cistern). In metabolic investigation, there were high glutarylcarnitine level in tandem mass spectrometry and high glutarate in urine organic acid analysis, GA1 was confirmed by absent glutaryl-CoA dehydrogenase activity in fibroblast culture. He was managed with lysine free milk and carnitine and riboflavin. He developed well without a metabolic crisis. If there is macrocephaly in an infant with neuroradiologic sign of frontotemporal atrophy, GA1 should have a high priority in the differential diagnosis. Because current therapy can prevent brain degeneration in more than 90% of affected infants who are treated prospectively, recognition of this disorder before the brain has been injured is essential for treatment.

The Effect of Fat and Oil Differently Composed of ${\omega}3\;and\;{\omega}6$ Polyunsaturated Fatty Acids on Lipid Metabolism of Rats -Centered on Brain, Kidney, Testis and Serum Lipoprotein- (${\omega}-3$계와 ${\omega}-6$계 고도 불포화 지방산의 혼합 비율이 다른 유지가 흰쥐의 지질대사에 미치는 영향(I) -뇌, 신장, 고환 및 혈청 lipoprotein을 중심으로-)

  • Kang, Jeong-Ock
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.3
    • /
    • pp.307-315
    • /
    • 1989
  • This research was intended to know the influence of ${\omega}3\;and\;{\omega}6$ polyunsaturated fatty acids on rat's brain, kidney, testis tissues and composition of serum lipoprotein. Different kinds of diets containing perilla oil (PO) and red pepper oil (RPO) were administered to the rats: group 1, 10% PO; group 2, 7.5% PO and 2.5% RPO ; group 3, 5% PO and 5% RPO ; group 4, 2.5% PO and 7.5% RPO ; group 5, 10% RPO. The following are the results. 1. No significance of cholesterol concentration in brain was noticed among the groups, but group 5 was the highest and other groups tended to decrease. 2. As for concentration of triglyceride and phospholipid, the groups with more percentage of RPO increased gradually while those with more PO decreased by degrees. 3. No significance of cholesterol level in kidney was found among the groups. About triglyceride level, group 5 was the highest and it was relatively low in groups2, 3 and 4. group 5, however, was the lowest in phospholipid level. 4. As to cholesterol concentration in testis, groups 1 to 4 were low. About triglyceride level, group 1 increased while groups 2 to 4 decreased. 5. Concerning lipoprotein pattern in serum, HDL increased in groups 1 to 3, while LDL decreased gradually with the increase of perilla oil.

  • PDF

Adzuki bean (Vigna angularis) extract reduces amyloid-β aggregation and delays cognitive impairment in Drosophila models of Alzheimer's disease

  • Miyazaki, Honami;Okamoto, Yoko;Motoi, Aya;Watanabe, Takafumi;Katayama, Shigeru;Kawahara, Sei-ichi;Makabe, Hidefumi;Fujii, Hiroshi;Yonekura, Shinichi
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Alzheimer's disease is a neurodegenerative disease that induces symptoms such as a decrease in motor function and cognitive impairment. Increases in the aggregation and deposition of amyloid beta protein ($A{\beta}$) in the brain may be closely correlated with the development of Alzheimer's disease. In this study, the effects of an adzuki bean extract on the aggregation of $A{\beta}$ were examined; moreover, the anti-Alzheimer's activity of the adzuki extract was examined. MATERIALS/METHODS: First, we undertook thioflavin T (ThT) fluorescence analysis and transmission electron microscopy (TEM) to evaluate the effect of an adzuki bean extract on $A{\beta}_{42}$ aggregation. To evaluate the effects of the adzuki extract on the symptoms of Alzheimer's disease in vivo, $A{\beta}_{42}$-overexpressing Drosophila were used. In these flies, overexpression of $A{\beta}_{42}$ induced the formation of $A{\beta}_{42}$ aggregates in the brain, decreased motor function, and resulted in cognitive impairment. RESULTS: Based on the results obtained by ThT fluorescence assays and TEM, the adzuki bean extract inhibited the formation of $A{\beta}_{42}$ aggregates in a concentration-dependent manner. When $A{\beta}_{42}$-overexpressing flies were fed regular medium containing adzuki extract, the $A{\beta}_{42}$ level in the brain was significantly lower than that in the group fed regular medium only. Furthermore, suppression of the decrease in motor function, suppression of cognitive impairment, and improvement in lifespan were observed in $A{\beta}_{42}$-overexpressing flies fed regular medium with adzuki extract. CONCLUSIONS: The results reveal the delaying effects of an adzuki bean extract on the progression of Alzheimer's disease and provide useful information for identifying novel prevention treatments for Alzheimer's disease.