DOI QR코드

DOI QR Code

Sulforaphene Attenuates Cutibacterium acnes-Induced Inflammation

  • Hwan Ju Hwang (WCU Biomodulation Major and Research Institute of Agriculture and Life Sciences,Department of Agricultural Biotechnology, Seoul National University) ;
  • Jong-Eun Kim (Department of Food Science and Technology, Korea National University of Transportation) ;
  • Ki Won Lee (WCU Biomodulation Major and Research Institute of Agriculture and Life Sciences,Department of Agricultural Biotechnology, Seoul National University)
  • Received : 2022.09.30
  • Accepted : 2022.10.18
  • Published : 2022.11.28

Abstract

Acne is a chronic inflammatory disease of the sebaceous gland attached to the hair follicles. Cutibacterium acnes is a major cause of inflammation caused by acne. It is well known that C. acnes secretes a lipolytic enzyme to break down lipids in sebum, and free fatty acids produced at this time accelerate the inflammatory reaction. There are several drugs used to treat acne; however, each one has various side effects. According to previous studies, sulforaphene (SFEN) has several functions associated with lipid metabolism, brain function, and antibacterial and anti-inflammatory activities. In this study, we examined the effects of SFEN on bacterial growth and inflammatory cytokine production induced by C. acnes. The results revealed that SFEN reduced the growth of C. acnes and inhibited proinflammatory cytokines in C. acnes-treated HaCaT keratinocytes through inhibiting NF-κB-related pathways. In addition, SFEN regulated the expression level of IL-1α, a representative pro-inflammatory cytokine expressed in co-cultured HaCaT keratinocytes and THP-1 monocytes induced by C. acnes. In conclusion, SFEN showed antibacterial activity against C. acnes and controlled the inflammatory response on keratinocytes and monocytes. This finding means that SFEN has potential as both a cosmetic material for acne prevention and a pharmaceutical material for acne treatment.

Keywords

Acknowledgement

This work was supported by the Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2021RIS-001), a Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korea government (Ministry of SMEs and Startups) (No. S3174595), National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (2019R1C1C1004387), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Technology Commercialization Support Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(821027) and the Korea National University of Transportation 2022.

References

  1. Gao L, Li H, Li B, Shao H, Yu X, Miao Z, et al. 2022. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. J. Ethnopharmacol. 294: 115387.
  2. Zheng W, Li X, Zhang T, Wang J. 2022. Biological mechanisms and clinical efficacy of sulforaphane for mental disorders. Gen. Psychiatr. 35: e100700.
  3. Kow CS, Ramachandram DS, Hasan SS. 2022. Use of sulforaphane in COVID-19: Clinical trials are needed. Mol. Immunol. 145: 78-79. https://doi.org/10.1016/j.molimm.2022.03.001
  4. Dana AH, Alejandro SP. 2022. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci. 299: 120554.
  5. Wang L, Jiang H, Liang X, Zhou W, Qiu Y, Xue C, et al. 2021. Preparation of sulforaphene from radish seed extracts with recombinant food-grade Yarrowia lipolytica harboring high myrosinase activity. J. Agric. Food Chem. 69: 5363-5371. https://doi.org/10.1021/acs.jafc.1c01400
  6. Lim S, Han S-W, Kim J. 2016. Sulforaphene identified from radish (Raphanus sativus L.) seeds possesses antimicrobial properties against multidrug-resistant bacteria and methicillin-resistant Staphylococcus aureus. J. Funct.Foods 24: 131-141. https://doi.org/10.1016/j.jff.2016.04.005
  7. Gao L, Du F, Wang J, Zhao Y, Liu J, Cai D, et al. 2021. Examination of the differences between sulforaphane and sulforaphene in colon cancer: A study based on next-generation sequencing. Oncol. Lett. 22: 690.
  8. Zhang G, Jin C, Zhu Y, Fu F, Wang G, Li S. 2020. Sulforaphene inhibits the progression of osteosarcoma via regulating FSTL1/NF-κB pathway. Life Sci. 263: 118485.
  9. Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX. 2020. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of Alzheimer's disease. Oxid. Med. Cell Longev. 2020: 4754195.
  10. Yang H, Kang MJ, Hur G, Lee TK, Park IS, Seo SG, et al. 2020. Sulforaphene suppresses adipocyte differentiation via induction of post-translational degradation of CCAAT/enhancer binding protein Beta (C/EBPβ). Nutrients 12: 758.
  11. Valente Duarte De Sousa IC. 2019. New and emerging drugs for the treatment of acne vulgaris in adolescents. Expert Opin. Pharmacother. 20: 1009-1024. https://doi.org/10.1080/14656566.2019.1584182
  12. Williams HC, Dellavalle RP, Garner S. 2012. Acne vulgaris. Lancet 379: 361-372. https://doi.org/10.1016/S0140-6736(11)60321-8
  13. Mohsin N, Hernandez LE, Martin MR, Does AV, Nouri K. 2022. Acne treatment review and future perspectives. Dermatol. Ther. 35: e15719.
  14. Andersen RK, Bouazzi D, Erikstrup C, Nielsen KR, Burgdorf KS, Bruun MT, et al. 2022. The social and psychological impact of acne treatment: A cross-sectional study of blood donors. J. Cutan. Med. Surg. 26: 485-493. https://doi.org/10.1177/12034754221119496
  15. Marron SE, Chernyshov PV, Tomas-Aragones L. 2019. Quality-of-life research in acne vulgaris: current status and future directions. Am. J. Clin. Dermatol. 20: 527-538. https://doi.org/10.1007/s40257-019-00438-6
  16. Tanghetti EA. 2013. The role of inflammation in the pathology of acne. J. Clin. Aesthet. Dermatol. 6: 27-35.
  17. Beylot C, Auffret N, Poli F, Claudel JP, Leccia MT, Del Giudice P, et al. 2014. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J. Eur. Acad. Dermatol. Venereol. 28: 271-278. https://doi.org/10.1111/jdv.12224
  18. Temiz SA, Daye M. 2022. Dapsone for the treatment of acne vulgaris: do the risks outweigh the benefits? Cutan. Ocul. Toxicol. 41: 60-66. https://doi.org/10.1080/15569527.2021.2024565
  19. Suh HD. 2010. Pharmacologic treatment acne. J. Korean Med. Assoc. 53: 623-629 https://doi.org/10.5124/jkma.2010.53.7.623
  20. Zouboulis CC, Eady A, Philpott M, Goldsmith LA, Orfanos C, Cunliffe WC, et al. 2005. What is the pathogenesis of acne? Exp. Dermatol. 14: 143-152. https://doi.org/10.1111/j.0906-6705.2005.0285b.x
  21. Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, et al. 2016. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 74: 945-973 e933.
  22. Boen M, Jacob C. 2019. A Review and update of treatment options using the acne scar classification system. Dermatol. Surg. 45: 411-422. https://doi.org/10.1097/DSS.0000000000001765
  23. Oh JH, Kim SH, Kwon OK, Kim JH, Oh SR, Han SB, et al. 2022. Purpurin suppresses atopic dermatitis via TNF-α/IFN-γ-induced inflammation in HaCaT cells. Int. J. Immunopathol. Pharmacol. 36: 3946320221111135.
  24. Jayasinghe AMK, Kirindage K, Fernando IPS, Han EJ, Oh GW, Jung WK, et al. 2022. Fucoidan Isolated from Sargassum confusum suppresses inflammatory responses and oxidative stress in TNF-α/IFN-γ- stimulated HaCaT keratinocytes by activating Nrf2/HO1 signaling pathway. Mar. Drugs 20: 117.
  25. Heo Y, Yeo KU, Cha WS, Yeon DE, Choi SH, Lee JY, et al. 2013. Development of skin sensitization alternative test through co-culture of THP-1 dendritic cell line and HaCaT keratinocyte cell line. J. Alternat. Anim. Exp. 7: 29-34.
  26. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. 2002. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J. Immunol. 169: 1535-1541. https://doi.org/10.4049/jimmunol.169.3.1535
  27. Chen Q, Koga T, Uchi H, Hara H, Terao H, Moroi Y, et al. 2002. Propionibacterium acnes-induced IL-8 production may be mediated by NF-κB activation in human monocytes. J. Dermatol. Sci. 29: 97-103. https://doi.org/10.1016/S0923-1811(02)00013-0
  28. Zhang B, Choi YM, Lee J, An IS, Li L, He C, et al. 2019. Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris. Biomed. Dermatol. 3: 4.
  29. Hernandez-Quintero M, Kuri-Harcuch W, Gonzalez Robles A, Castro-Munozledo F. 2006. Interleukin-6 promotes human epidermal keratinocyte proliferation and keratin cytoskeleton reorganization in culture. Cell Tissue Res. 325: 77-90. https://doi.org/10.1007/s00441-006-0173-9
  30. Dixit N, Simon SI. 2012. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest. Front. Immunol. 3: 188.
  31. Fang F, Xie Z, Quan J, Wei X, Wang L, Yang L. 2020. Baicalin suppresses Propionibacterium acnes-induced skin inflammation by downregulating the NF-κB/MAPK signaling pathway and inhibiting activation of NLRP3 inflammasome. Braz. J. Med. Biol. Res. 53: e9949.
  32. Kim J. 2005. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211: 193-198. https://doi.org/10.1159/000087011
  33. Kistowska M, Gehrke S, Jankovic D, Kerl K, Fettelschoss A, Feldmeyer L, et al. 2014. IL-1beta drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J. Invest. Dermatol. 134: 677-685. https://doi.org/10.1038/jid.2013.438