• Title/Summary/Keyword: Brain, metabolism

Search Result 295, Processing Time 0.031 seconds

Changes of Gangliosides Metabolism in Streptozotocin-Induced Diabetic Rats and Effect of Deer Antler (Streptozotocin 유발 당뇨병쥐 뇌에서 Gangliosides 대사 변화와 녹용의 효과)

  • 조현진;전길자
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.223-228
    • /
    • 1994
  • In this study, we examined gangliosides from streptozotocin-induced diabetic rat brain. To obtain the diabetic rat brain, we sacrified the rat three days after injecting the streptozotocin into venus in tail. We measured blood glucose level according to Somogy-Nelson method and measured insulin level using $^{125}$ I-insulin RIA kit. The gangliosides were extracted according to Folch-Suzuki method from the rat brain. We also examined the effect of major lipid components extracted from deer antler on diabetic rat brain. The results showed that the major lipids components lowered both blood glucose and insulin level in normal rat. However only the blood glucose level in diabetic rat was lowered with major lipid components. In diabetic rat brain, gangliosides metabolism were changed. The amount of GMla was increased while GDla, GDlb, and GTlb were not synthesized. Furthermore, undefined ganglioside was found. In major lipid component-treated diabetic rat brain, the ganglioside metabolism proceeded as same as the normal rat. On the contrary, in bovine brain gangliosides-treated diabetic rat brain, the gangliosides metabolism was not recovered to normal one.

  • PDF

Effect of Riboflavin on the Metabolism of Lipids and Neurotransmitter in Rat Brain (리보플라빈이 뇌조직이 지방과 신경전달 물질대사에 미치는 영향)

  • 이상선
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.680-691
    • /
    • 1993
  • Rats were fed for an 8-week period a low riboflavin diet(5ug riboflavin/day) or a control diet(30ug/day) supplied either ad libitum or by pair feeding in order to study the effect of riboflavin on the metabolism of lipids and neurotransmitters. Erythrocyte glutathione reductase (EGR) and monomine oxidase(MAO) activity in the liver and brain were assayed. EGR activity coefficient in riboflavin deficient rats was significantly higher than in ad libitum controls whereas MAO activity was decreased in the deficient rats. Fatty acid composition showed a different trend in the serum, liver and brain. In the serum, the concentrations of essential fatty acids and $\omega$-3 fatty acids(eicosapentaenoic acid, docosahexaenoic acid)were decreased about 20-40% in the deficient and pair-fed than in the ad libitum controls. Brain serotonin and 5-HIAA(5-hydroxyindole acetic acid) concentrations were decreased in the riboflavin deficient rats. Learning ability measured by a water maze and exploratory activity using the open field test were not impaired in the deficient rats. These results indicate that brain lipid metabolism was protected in subclinical riboflavin deficiency, however, riboflavin deficiency affected brain serotonin content.

  • PDF

RNA Metabolism in T Lymphocytes

  • Jin Ouk Choi;Jeong Hyeon Ham;Soo Seok Hwang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.39.1-39.18
    • /
    • 2022
  • RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

Silibinin Inhibits Osteoclast Differentiation Mediated by TNF Family Members

  • Kim, Jung Ha;Kim, Kabsun;Jin, Hye Mi;Song, Insun;Youn, Bang Ung;Lee, Junwon;Kim, Nacksung
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of $NF-{\kappa}B$, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit $TNF-{\alpha}$-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and $TNF-{\alpha}$.

Computational identification of significantly regulated metabolic reactions by integration of data on enzyme activity and gene expression

  • Nam, Ho-Jung;Ryu, Tae-Woo;Lee, Ki-Young;Kim, Sang-Woo;Lee, Do-Heon
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.609-614
    • /
    • 2008
  • The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.

Proline Metabolism in Neurological and Psychiatric Disorders

  • Yao, Yuxiao;Han, Weiping
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.781-788
    • /
    • 2022
  • Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.

Effect of Dietary Protein Level and Tryptophan Administration on Brain Serotonin Metabolism (식이 단백질 수준 및 Tryptophan 투여가 Serotonin 대사에 미치는 영향)

  • 신동순;김미경
    • Journal of Nutrition and Health
    • /
    • v.26 no.3
    • /
    • pp.231-247
    • /
    • 1993
  • This study was designed to confirm the effect of dietary protein level and oral administration of tryptophan on brain serotonin metabolism. Two animal experiments were conducted. The objectives and results of research were as follows : In the first experiment, it was investigated whether administration of reserpine to Sprague-Dawley rats fed 6% or 20% casein diet induced decrease in serum tryptophan and large neutral amino acid(LNAA) concentrations, tryptophan/LNAA concentration ratio, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid(5-HIAA) contents. Brain serotonin content of 6% casein diet group was lower than those of 20% casein diet group. Both 6% and 20% casein diet groups administered with reserpine to induce the analogous depression, showed the notable decrease in brain serotonin content when they were compared with 20% casein diet group not administered with reserpine. Serum tryptophan/LNAA ration and brain 5-HIAA content showed a tendency similar to the change of serotonin content, but the mean difference among all groups was not significant. From these results, it could be said that when the dietary protein level was low, brain serotonin content was decrease. The second experimnt was to see the change in serum tryptophan concentration and tryptophan/LNAA ratio and brain tryptophan, serotonin and 5-HIAA content when tryptophan was administered orally to the animals treated with reserpine. Serum tryptophan concentration tended to increase in both reserpine-treated 6% and 20% casein diet groups administered with tryptophan, especially in the 6% casein diet group. Serum tryptophan/LNAA concentration ratio tended to incrase in reserpine-tteated 6% casein diet group, while decrease in reserpine-treated 20% casein diet group. Brain tryptophan content was increased in both reserpine-treated 6% and 20% casein diet groups. However, brain serotonin content of reserpine-treated 6% casein diet group showed a tendency to decrease, while that of reserpine-treated 20% casein group increase. Consequently, the effect of tryptophan administration on increase of brain tryptophan and serotonin content in animals treated with reserpine was far more excellent in 20% casein diet groups. It was concluded that dietary protein intake and tryptophan administration increase brain serotonin level. Accordingly, it was possible to confirm that brain function, particularly in aspect of behavior related to the serotonin, was changed with manipulation of dietary composition.

  • PDF

Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model

  • Danbi Jo;Yoon Seok Jung;Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.12 no.2
    • /
    • pp.154-167
    • /
    • 2023
  • Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.

Changes in Gene Expression in the Rat Hippocampus after Focal Cerebral Ischemia

  • Chung, Jun-Young;Yi, Jae-Woo;Kim, Sung-Min;Lim, Young-Jin;Chung, Joo-Ho;Jo, Dae-Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Objective : The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. Methods : Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. Results : According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased.Conclusion : Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.

Correlation Between Unidentified Bright Objects on Brain Magnetic Resonance Imaging (MRI) and Cerebral Glucose Metabolism in Patients with Neurofibromatosis Type 1

  • Sohn, Young Bae;An, Young Sil;Lee, Su Jin;Choi, Jin Wook;Jeong, Seon-Yong;Kim, Hyon-Ju;Ko, Jung Min
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • Purpose: Neurofibromatosis type 1 (NF1), which is caused by mutations of the NF1 gene, is the most frequent single gene disorder to affect the nervous system. Unidentified bright objects (UBOs) are commonly observed on brain magnetic resonance imaging (MRI) in patients with NF1. However, their clinical and pathologic significance is not well understood. The purpose of this study was to investigate the correlation between UBOs and cerebral glucose metabolism measured by $^{18}F$-2-Fluoro-2-deoxy-D-glucose ($^{18}F$-FDG) positron emission tomography (PET) in Korean patients with NF1. Materials and Methods: Medical records of 75 patients (34 males and 41 females) with NF1 who underwent brain MRI and PET between 2005 and 2011 were evaluated retrospectively. Clinical data including demographics, neurological symptoms, and brain MRI and PET findings, were reviewed. Results: UBOs were detected in the brain MRI scans of 31 patients (41%). The region most frequently affected by UBOs was the basal ganglia. The most frequent brain PET finding was thalamic glucose hypometabolism (45/75, 60%). Of the 31 patients with UBOs, 26 had thalamic glucose hypometabolism on brain PET, but the other 5 had normal brain PET findings. Conversely, of the 45 patients with thalamic glucose hypometabolism on brain PET, 26 showed UBOs on their brain MRI scans, but 19 had normal findings on brain MRI scans. Conclusion: UBOs on brain MRI scans and thalamic glucose hypometabolism on PET appear to be 2 distinctive features of NF1 rather than correlated symptoms. Because the clinical significance of these abnormal imaging findings remains unclear, a longitudinal follow-up study of changes in clinical manifestations and imaging findings is necessary.