• Title/Summary/Keyword: Brain, Supplementary motor area

Search Result 19, Processing Time 0.023 seconds

Development of motor representation brain mechanism VR system using IMRI study: A Pilot Study (운동 표상과 관련된 뇌 메커니즘을 알아보기 위한 VR 시스템 개발 및 이를 이용한 fMRI 연구: 예비 실험)

  • Lee, Won-Ho;Ku, Jeong-Hun;Cho, Sang-Woo;Lee, Hyeong-Rae;Han, Ki-Wan;Park, Jin-Sick;Kim, Jae-Jin;Kim, In-Young;Kim, Sun-I.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.728-732
    • /
    • 2008
  • In this study, we developed motor representation brain mechanism system using fMRI and pilot study is performed, fMRI task were composed two tasks, which provided visual feedback and hid visual feedback. Left superior orbital gyrus, bilateral precentral gyrus, left superior occipital gyrus, left supplementary motor area, right thalamus, right postcentral gyrus and right superior parietal lobule activated with visual feedback. Left precuneus, right middle temporal gyrus, bilateral supplementary motor area, right anterior cingulate cortex, left Inferior temporal gyrus, left insula lobe, right superior parietal lobule, bilateral postcentral gyrus and left precentral gyrus activated without visual feedback. We could found brain mechanism of motor representation using without visual feedback.

  • PDF

The Comparison of the Cerebral Motor Area Activation between Diagonal and Straight Exercises of the Lower Extremity -A Case Study- (하지의 대각선 운동과 직선 운동 시 대뇌 운동영역 활성도 비교 -사례연구-)

  • Lee, Seuong-Yun;Rhee, Min-Hyung
    • PNF and Movement
    • /
    • v.14 no.3
    • /
    • pp.231-236
    • /
    • 2016
  • Purpose: The purpose of this study was to compare cerebral motor area activation between the diagonal and straight movements of the lower extremity. Methods: The subjects of this study consisted of two right-handed adults. Functional magnetic resonance imaging was conducted to measure brain activation following the diagonal and straight movements of the lower extremity. The primary motor area, premotor area, and supplementary motor area, which are closely related to exercise, were set as the regions of interest. Results: The brain activation by diagonal movement was an average of $1036{\pm}75$ voxel, and brain activation by straight exercise was an average of $773{\pm}55$ voxel. Conclusion: Based on these results, we conclude that the activation of the cerebral motor area is more effective for diagonal movements than for straight movements.

Analysis of Brain Activation due to Mouth Shape during Grip Movement (잡기동작 수행 시 입모양에 따른 뇌활성화 분석)

  • Shim, Je-Myung;Kim, Hwan-Hee;Kim, Chung-Sun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.467-476
    • /
    • 2010
  • Purpose : This study was performed to understand the relationship between hand and mouth shapes using functional magnetic resonance imaging(fMRI). Methods : Two healthy volunteers without any previous history of physical or neurological illness were recruited. fMRI was done that volunteers was 6 repeated of natural mouth, close mouth and open mouth while power grip and pinch grip movement. Results : Cerebral cortex activation was not well observed for the natural mouth during the power grip exercise. For the closed mouth, the temporal lobe, Broca's area, the prefrontal area related to thinking and judgment, the supplementary motor area, the auditory area and Wernicke's area were activated. For the open mouth, cortical activation was also observed in the temporal lobe, Wernicke's area, the prefrontal area related to thinking and the orbital frontal area related to visual sense. During the pinch grip exercise, cortical activation was observed for the natural mouth in the primary sensory area, Wernicke's area, the primary and supplementary motor area, and the prefrontal area. For the closed mouth, cortical activation was observed in the temporal lobe, Wernicke's area, the prefrontal area related to thinking, the secondary visual area, the primary sensory area and the supplementary motor area. In the case of the open mouth, cortical activation was observed in a few parts in the temporal lobe as well as Wernicke's area, the prefrontal area related to thinking, and other areas related to visual sense such as the primary visual area, the secondary visual area and the visual association area. Conclusion : Brain was more activation for close mouth and open mouth more than natural mouth movement.

Effects of Low Intensity Blood Flow Restriction Training on Brain Motor Area Activation

  • Rhee, Min-Hyung;Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.235-241
    • /
    • 2022
  • Purpose: The purpose of this study was to identify the effects of low intensity blood flow restriction training (LBFR) on the central nervous system of healthy adults. Methods: Ten healthy right-handed adults (eight males and two females, mean age of 28.6 ± 2.87 years) were selected as study subjects. Functional magnetic resonance imaging (fMRI) was conducted to measure brain activation (BA) following LBFR and non-LBFR. The primary motor area, premotor area, and supplementary motor area, which are closely related to exercise, were set as the regions of interest. Results: The BA recorded during the LBFR condition was 931.7 ± 302.44 voxel, and the BA recorded during the non-LBFR condition was 1,510.9 ± 353.47 voxel. Conclusion: BA was lower during LBFR than during non-LBFR.

Cerebral Activity by Motor Task in Welders Exposed to Manganese through fMRI (fMRI를 이용한 망간 노출 용접공의 운동수행에 따른 뇌 활성도 평가)

  • Choi, Jae-Ho;Jang, Bong-Ki;Lee, Jong-Wha;Hong, Eun-Ju;Lee, Myeong-Ju;Ji, Dong-Ha
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.102-112
    • /
    • 2011
  • Objectives: The purpose of this study is to analyze the effects of chronic exposure by welders to manganese (Mn) through an analysis of the degree of brain activity in different activities such as cognition and motor activities using the neuroimaging technique of functional magnetic resonance imaging (fMRI). The neurotoxic effect that Mn has on the brain was examined as well as changes in the neuro-network in motor areas, and the usefulness of fMRI was evaluated as a tool to determine changes in brain function from occupational exposure to Mn. Methods: A survey was carried out from July 2010 to October 2010 targeting by means of a questionnaire 160 workers from the shipbuilding and other manufacturing industries. Among them, 14 welders with more than ten years of job-related exposure to Mn were recruited on a voluntary basis as an exposure group, and 13 workers from other manufacturing industries with corresponding gender and age were recruited as a control group. A questionnaire survey, a blood test, and an fMRI test were carried out with the study group as target. Results: Of 27 fMRI targets, blood Mn concentration of the exposure group was significantly higher than that of the control group (p<0.001), and Pallidal Index (PI) of the welder group was also significantly higher than that of the control group (p<0.001). As a result of the survey, the score of the exposure group in self-awareness of abnormal nerve symptoms and abnormal musculoskeletal symptoms was higher than those of the control group, and there was a significant difference between the two groups (p<0.05, respectively). In the correlation between PI and the results of blood tests, the correlation coefficient with blood Mn concentration was 0.893, revealing a significant amount of correlation (p<0.001). As for brain activity area within the control group, the right and the left areas of the superior frontal cortex showed significant activity, and the right area of superior parietal cortex, the left area of occipital cortex and cerebellum showed significant activity. Unlike the control group, the exposure group showed significant activity selectively on the right area of premotor cortex, at the center of supplementary motor area, and on the left side of superior temporal cortex. In the comparison of brain activity areas between the two groups, the exposure group showed a significantly higher activation state than did the control group in such areas as the right and the left superior parietal cortex, superior temporal cortex, and cerebellum including superior frontal cortex and the right area of premotor cortex. However, in nowhere did the control group show a more activated area than did the exposure group. Conclusions: Chronic exposure to Mn increased brain activity during implementation of hand motor tasks. In an identical task, activation increased in the premotor cortex, superior temporal cortex, and supplementary motor area. It was also discovered that brain activity increase in the frontal area and occipital area was more pronounced in the exposure group than in the control group. This result suggests that chronic exposure to Mn in the work environment affects brain activation neuro-networks.

Mild Bradykinesia Due to an Injury of Corticofugal-Tract from Secondary Motor Area in a Patient with Traumatic Brain Injury

  • Lee, Han Do;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.304-306
    • /
    • 2021
  • Objectives: We report on a patient who showed mild bradykinesia due to injury of the corticofugal tract (CFT) from the secondary motor area following direct head trauma, which was demonstrated on diffusion tensor tractography (DTT). Case summary: A 58-year-old male patient underwent conservative management for subarachnoid hemorrhages caused by direct head trauma resulting from a fall from six-meter height at the department of neurosurgery of a local hospital. His Glasgow Coma Scale score was 3. He developed mildly slow movements following the head trauma and visited the rehabilitation department of a university hospital at ten weeks after the fall. The patient exhibited mild bradykinesia during walking and arm movements with mild weakness in all four extremities (G/G-). Results: On ten-week DTT, narrowing of the right CFT from the supplementary motor area (SMA-CFT), and partial tearing of the left SMA-CFT, left CFTs from the dorsal premotor cortex (dPMC-CFT) and both corticospinal tracts (CSTs) at the subcortical white matter were observed. Conclusion: This case demonstrated abnormalities in both CSTs (partial tearing at the subcortical white matter and narrowing), both SMA-CFTs (narrowing and partial tearing) and left dPMC-CFT. We believe our findings suggest the necessity of assessment of the CFTs from the secondary motor area for patients with unexplained bradykinesia following direct head trauma.

Somatotopic Mapping of the Supplementary Motor Area (부운동영역의 뇌지도화)

  • Han Young Min;Jeong Su-Hyun;Lee Heon;Jin Gong Yong;Lee Sang Yong;Chung Gyung Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • Purpose : The purpose of this study was to assess supplementary motor area (SMA) activation during motor, sensory, word generation, listening comprehension, and working memory tasks using functional magnetic resonance imaging (fMRI). Materials and Methods : Sixteen healthy right-handed subjects (9M, 7F) were imaged on a Siemens 1.5T scanner. Whole brain functional maps were acquired using BOLD EPI sequences in the axial plane. Each paradigm consisted of five epochs of activation vs. the control condition. The activation tasks consisted of left finger complex movement, hot sensory stimulation of the left hand, word generation, listening comprehension, and working memory. The reference function was a boxcar waveform. Activation maps were thresholded at an uncorrected p=0.0001. The thresholded activation maps were placed into MNI space and the anatomic localization of activation within the SMA was compared across tasks. Results : SMA activation was observed in 16 volunteers for the motor task, 11 for the sensory task, 15 for the word generation task, 5 for the listening comprehension task, and 15 for the working memory task. The rostral aspects of the SMA showed activity during the word generation and working memory tasks, and the caudal aspects of the SMA showed activity during the motor and sensory tasks. Right (contralateral) SMA activation was observed during the motor and sensory tasks, and left SMA activation during the word generation and memory tasks. Conclusion : Our results suggest that SMA is involved in a variety of functional tasks including motor, sensory, word generation, and working memory. The results obtained also support the notion that functionally specific subregions exist within the region classically defined as the SMA.

  • PDF

Functional MRI ofThe Supplementary Motor Area in Hand Motor Task: Comparison Study with The Primary Motor Area (수지운동자극을 사용한 부운동중추의 기능적 MR연구: 일차운동중추와의 비교)

  • 이호규;김진서;최충곤;임태환
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.103-107
    • /
    • 1997
  • Purpose: To investigate the localization and functional lateralization of the supplementary motor area (SMA) in motor activation tests in comparison to that of the primary motor area. Materials and Methods: Seven healthy volunteers obtained echoplanar imaging blood oxygen level dependent technique. This study was carried on 1.5T Siemens Magnetom Vision system with the standard head coil. Parameters of EPI were followed as; TR/TE : 1.0/66.0msec, flip angle: $90^{\circ}$, field of view: $22cm{\times}22cm,{\;}matrix:{\;}128{\times}128$, slice number/slice thickness/gap: 1O/4mm/0.8mm with fat suppression technique. Motor task as finger opposition in each hand consisted of 3 sets of alternative rest and activation periods. Postprocessing were done on Stimulate 5.0 by using cross-correlation statistics. To compare the functional lateralization of the SMA in the right and left hand tests, each examination was evaluated for the percent change of signal intensity and the number of activated voxels both in the SMA and in the pri¬mary motor area. Hemispheric asymmetry was defined as difference of summation of the activted voxels between each hemisphere. Results: Percent change of signal intensity in the SMA (2.49 -3.06%) is lower than that of primary motor area(4.4 -7.23%). Percent change of signal intensity including activated voxels were observed almost equally in the right and left SMA. As for summation of activated voxels, primary motor area had significant difference between each hemisphere but not did the SMA. Conclusion: Preferred contralateral dominant hemisphere and hemispheric asymmetry were detected in the primary motor area but not in the SMA.

  • PDF

Comparison of Cortical Activation between Concentric and Eccentric Exercise: A Pilot fMRI Study (기능적 자기공명영상을 이용한 구심성 및 원심성 근 수축에 따른 뇌 활성도 분석)

  • Kim, Chung-Sun;Kim, Joong-Hwi;Park, Min-Kyu;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • Purpose: Behavior and movement are accomplished by voluntary contractions of skeletal muscles. There are three types of muscle contractions: concentric, isometric and eccentric. The aim of our study was to determine whether there is a difference in the cortical activation pattern between concentric contraction and eccentric contraction of the wrist extensor muscle. Methods: Four healthy right-handed volunteers without any previous history of physical or neurological illness were recruited. fMRI scanning was done during 4 repeated blocks of concentric and eccentric exercise of the wrist joint. Subjects exercised for 12 seconds and then rested for 12 seconds before beginning the second set of exercises. To determine the excitability of cortical neurons during exercise, voxel count and intensity index were analyzed. Results: For right hand movements, when concentric contractions of the right wrist were done, only the left primary motor area was activated. In contrast, during eccentric contraction, both the primary motor area and secondary motor area were activated. For left hand movements, both concentric and eccentric contractions induced only the supplementary motor cortex and the contralateral primary motor cortex. Conclusion: During eccentric contractions, both the primary motor area and secondary motor area are activated in ipsilateral and contralateral brain areas. Thus, eccentric contractions require more complex and difficult movements than concentric contractions do.

Correlation between Faster Response Time and Functional Activities of Brain Regions during Cognitive Time Management (인지적 시간관리에 필요한 기능적 뇌 활성 영역과 반응시간의 상관관계)

  • Park, Ji-Won;Shin, Hwa-Kyung;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Purpose: This study was designed to determine the correlation between faster response time and functional activities of brain regions during cognitive time management. Methods: Twelve healthy subjects participated in this experiment. Subjects performed the serial reaction time task (SRTT), which was designed by the Superlab program, during fMRI scanning. When the 'asterisk' appeared in the 4 partition spaces on the monitor, the subject had to press the correct response button as soon as possible. Results: fMRI results showed activation of the left primary sensorimotor cortex, both premotor areas, the supplementary motor area, posterior parietal cortex and cerebellum. There were significant correlations, from moderate to strong, between faster reaction time and BOLD signal intensity in activated areas. Conclusion: These results suggest that motor skill learning to be needed cognitive time management is associated with greater activation of large scale sensorimotor networks.