Correlation between Faster Response Time and Functional Activities of Brain Regions during Cognitive Time Management

인지적 시간관리에 필요한 기능적 뇌 활성 영역과 반응시간의 상관관계

  • Park, Ji-Won (Department of Physical Therapy, College of Medical Science, Catholic University of Daegu) ;
  • Shin, Hwa-Kyung (Department of Physical Therapy, College of Medical Science, Catholic University of Daegu) ;
  • Jang, Sung-Ho (Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University)
  • 박지원 (대구가톨릭대학교 의료과학대학 물리치료학과) ;
  • 신화경 (대구가톨릭대학교 의료과학대학 물리치료학과) ;
  • 장성호 (영남대학교 의과학대학 재활의학교실)
  • Received : 2010.01.25
  • Accepted : 2010.03.21
  • Published : 2010.04.25

Abstract

Purpose: This study was designed to determine the correlation between faster response time and functional activities of brain regions during cognitive time management. Methods: Twelve healthy subjects participated in this experiment. Subjects performed the serial reaction time task (SRTT), which was designed by the Superlab program, during fMRI scanning. When the 'asterisk' appeared in the 4 partition spaces on the monitor, the subject had to press the correct response button as soon as possible. Results: fMRI results showed activation of the left primary sensorimotor cortex, both premotor areas, the supplementary motor area, posterior parietal cortex and cerebellum. There were significant correlations, from moderate to strong, between faster reaction time and BOLD signal intensity in activated areas. Conclusion: These results suggest that motor skill learning to be needed cognitive time management is associated with greater activation of large scale sensorimotor networks.

Keywords

References

  1. Rubia K, Smith A. The neural correlates of cognitive time management: A review. Acta Neurobiol Exp (Wars). 2004;64(3):329-40.
  2. Coull JT, Nobre AC. Dissociating explicit timing from temporal expectation with fmri. Current Opinion in Neurobiology. 2008;18(2):137-44. https://doi.org/10.1016/j.conb.2008.07.011
  3. Bueti D, Walsh V, Frith C et al. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204-14. https://doi.org/10.1162/jocn.2008.20017
  4. Jantzen KJ, Oullier O, Marshall M et al. A parametric fmri investigation of context effects in sensorimotor timing and coordination. Neuropsychologia. 2007;45(4):673-84. https://doi.org/10.1016/j.neuropsychologia.2006.07.020
  5. Park JW, Kwon YH, Lee MY et al. Brain activation pattern according to exercise complexity: A functional mri study. NeuroRehabilitation. 2008;23(3):283-8.
  6. Dominey PF. A shared system for learning serial and temporal structure of sensori-motor sequences? Evidence from simulation and human experiments. Brain Res Cogn Brain Res. 1998;6(3):163-72. https://doi.org/10.1016/S0926-6410(97)00029-3
  7. Kwon YH, Jang SH, Kim CS. Changes of cortical activation pattern induced by motor learning with serial reaction time task. J Kor Soc Phys Ther. 2009;21(1):65-72. https://doi.org/10.1589/jpts.21.65
  8. Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measurs. Cogn Psychol. 1987;19:1-32. https://doi.org/10.1016/0010-0285(87)90002-8
  9. Park JW, Kim YH, Jang SH et al. Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation. 2010;26(2):95-103.
  10. Park JW, Jang SH. The difference of cortical activation pattern according to motor learning in dominant and non-dominant hand: An fmri case study. J Kor Soc Phys Ther. 2009;21(1):81-8.
  11. Yoo WK, You SH, Ko MH et al. High frequency rtms modulation of the sensorimotor networks: Behavioral changes and fmri correlates. Neuroimage. 2008;39(4):1886-95. https://doi.org/10.1016/j.neuroimage.2007.10.035
  12. Grafton ST, Hazeltine E, Ivry R. Functional mapping of sequence learning in normal humans. J Cognit Neurosci. 1995;7:497-510. https://doi.org/10.1162/jocn.1995.7.4.497
  13. Hazeltine E, Grafton ST, Ivry R. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A pet study. Brain. 1997;120(Pt 1):123-40.
  14. Toni I, Krams M, Turner R et al. The time course of changes during motor sequence learning: A whole-brain fmri study. Neuroimage. 1998;8(1):50-61. https://doi.org/10.1006/nimg.1998.0349
  15. Halsband U, Freund HJ. Premotor cortex and conditional motor learning in man. Brain. 1990;113(Pt 1):207-22. https://doi.org/10.1093/brain/113.1.207
  16. Petrides M. Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia. 1997;35(7):989-97. https://doi.org/10.1016/S0028-3932(97)00026-2
  17. Verstynen T, Diedrichsen J, Albert N et al. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol. 2005;93(3):1209-22. https://doi.org/10.1152/jn.00720.2004
  18. Seitz RJ, Hoflich P, Binkofski F et al. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol. 1998;55(8):1081-8. https://doi.org/10.1001/archneur.55.8.1081
  19. Rubia K, Overmeyer S, Taylor E et al. Prefrontal involvement in "Temporal bridging" And timing movement. Neuropsychologia. 1998;36(12):1283-93. https://doi.org/10.1016/S0028-3932(98)00038-4
  20. Harrington DL, Haaland KY. Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci. 1999;10(2):91-116. https://doi.org/10.1515/REVNEURO.1999.10.2.91
  21. Curtis CE. Prefrontal and parietal contributions to spatial working memory. Neuroscience. 2006;139(1):173-80. https://doi.org/10.1016/j.neuroscience.2005.04.070
  22. Ricciardi E, Bonino D, Gentili C et al. Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience. 2006;139(1):339-49. https://doi.org/10.1016/j.neuroscience.2005.08.045
  23. Rubia K, Overmeyer S, Taylor E et al. Functional frontalisation with age: Mapping neurodevelopmental trajectories with fmri. Neurosci Biobehav Rev. 2000;24(1):13-9. https://doi.org/10.1016/S0149-7634(99)00055-X
  24. Emond V, Joyal C, Poissant H. [structural and functional neuroanatomy of attention-deficit hyperactivity disorder (adhd)]. Encephale. 2009;35(2):107-14. https://doi.org/10.1016/j.encep.2008.01.005
  25. Schell GR, Strick PL. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci. 1984;4(2):539-60. https://doi.org/10.1523/JNEUROSCI.04-02-00539.1984
  26. Halsband U, Ito N, Tanji J et al. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain. 1993;116(Pt 1):243-66. https://doi.org/10.1093/brain/116.1.243
  27. Mostofsky SH, Powell SK, Simmonds DJ et al. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132(Pt 9):2413-25. https://doi.org/10.1093/brain/awp088
  28. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334-46. https://doi.org/10.1016/S0079-6123(08)60971-1
  29. Smith A, Taylor E, Lidzba K et al. A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage. 2003;20(1):344-50. https://doi.org/10.1016/S1053-8119(03)00337-9
  30. Pouthas V, George N, Poline JB et al. Neural network involved in time perception: An fmri study comparing long and short interval estimation. Hum Brain Mapp. 2005;25(4):433-41. https://doi.org/10.1002/hbm.20126
  31. Basso G, Nichelli P, Wharton CM et al. Distributed neural systems for temporal production: A functional mri study. Brain Res Bull. 2003;59(5):405-11. https://doi.org/10.1016/S0361-9230(02)00941-3
  32. Ortuno F, Ojeda N, Arbizu J et al. Sustained attention in a counting task: Normal performance and functional neuroanatomy. Neuroimage. 2002;17(1):411-20. https://doi.org/10.1006/nimg.2002.1168
  33. Eliassen JC, Souza T, Sanes JN. Experience-dependent activation patterns in human brain during visual-motor associative learning. J Neurosci. 2003;23(33):10540-7. https://doi.org/10.1523/JNEUROSCI.23-33-10540.2003
  34. Grafton ST, Hazeltine E, Ivry RB. Motor sequence learning with the nondominant left hand. A pet functional imaging study. Exp Brain Res. 2002;146(3):369-78. https://doi.org/10.1007/s00221-002-1181-y
  35. Nelson AJ, Staines WR, McIlroy WE. Tactile stimulus predictability modulates activity in a tactile-motor cortical network. Exp Brain Res. 2004;154(1):22-32. https://doi.org/10.1007/s00221-003-1627-x
  36. Burton H. Cerebral cortical regions devoted to the somatosensory system: Results from brain imaging studies in humans. In: Nelson RJ, eds, The somatosensory system: Deciphering the brain's own body image, Boca Raton, FL, CRC Press, 2002:27-72.
  37. Hansson T, Brismar T. Tactile stimulation of the hand causes bilateral cortical activation: A functional magnetic resonance study in humans. Neurosci Lett. 1999;271(1):29-32. https://doi.org/10.1016/S0304-3940(99)00508-X
  38. Iwamura Y. Bilateral receptive field neurons and callosal connections in the somatosensory cortex. Philos Trans R Soc Lond B Biol Sci. 2000;355(1394):267-73. https://doi.org/10.1098/rstb.2000.0563
  39. Schnitzler A, Salmelin R, Salenius S et al. Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett. 1995;200(1):25-8. https://doi.org/10.1016/0304-3940(95)12065-C
  40. Cavada C, Goldman-Rakic PS. Topographic segregation of corticostriatal projections from posterior parietal subdivisions in the macaque monkey. Neuroscience. 1991;42(3):683-96. https://doi.org/10.1016/0306-4522(91)90037-O