• 제목/요약/키워드: Braided Composites

검색결과 37건 처리시간 0.019초

3차원 브레이드 유리섬유/에폭시 복합재료의 열전도도 예측에 관한 연구 (Prediction of Thermal conductivities of 3-D braided glass/epoxy composites using a thermal-electrical analogy)

  • 정혁진;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.52-55
    • /
    • 2002
  • This paper examines the effective thermal conductivity of 3-D braided glass/epoxy composites. 3-D braided composites have a number of advantage over conventional laminate composites, including through-thickness reinforcement, and high damage tolerance and processability. The thermal properties of composites depend primarily on the microstructure of the braided preform and properties of constituent materials. A thermal resistance network model based on structure of the braided preform is proposed by using thermal-electrical analogy. In order to affirm the applicability theses solutions, thermal conductivities of 3-D braided glass/epoxy composites are measured

  • PDF

Braided 탄소섬유강화 알루미늄 기지 금속복합재료의 제조 및 기계적 특성평가 (Fabrication and Mechanical Characterization of Braided Carbon Fiber Reinforced Al Matrix Composites)

  • 김경태;이상관;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2002
  • Braided carbon fiber reinforced Al matrix composites were developed and characterized. Braided carbon fiber preforms with braiding angles of $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ were manufactured by using a braiding machine. The manufactured braided carbon fibers were used as reinforcement to fabricate Al matrix composites by employing a pressure infiltration casting method. In the processing of pressure infiltration casting, important processing parameters such as melting temperature, preheating temperature of preform and applied pressure were optimized. Prediction of elastic constants on composites was performed by using the volume averaging method, which utilizes the coordinate transformation and the averaging of stiffeness and compliance constants based upon the volume of each reinforcement and matrix material. The elastic moduli of composites were evaluated by using Resonant Ultrasound Spectroscopy(RUS) method and compared with the elastic moduli obtained from static tensile test method.

  • PDF

Mechanical Properties Prediction by Manufacturing Parameters for Braided Composites

  • Kim, Myungjun
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.25-31
    • /
    • 2020
  • The development of manufacturing technology for braided composites has led to farther extension of the applications in aerospace structures. Since the mechanical characteristics of braided composites are affected by various materials and manufacturing parameters, it is important to determine the parameters required to appropriately design the braided composite structures. In this study, we proposed a geometric model of RUC (repeating unit cell) for 2D braided composites, and predicted the mechanical properties according to the change of fiber volume fraction, fiber filament size, braiding angle, and gap between adjacent yarns by the yarn slicing technique and stress averaging method. Finally, we analyze the characteristics of mechanical properties according to each manufacturing parameter of the braided composite material.

셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식 (Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method)

  • 이원오;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링 (Geometrical Modeling for Hybrid 3-D Braided Composites)

  • 한문희;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

2-D Braided Textile 금속복합재료의 성형과 특성 해석 (Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites)

  • 이상관;김효준;변준형;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

항공기용 스트링거 제작을 위한 브레이드 복합재료의 물성에 관한 연구 (A Study on the Mechanical Properties of Braid Composites for the Manufacture of Aircraft Stringer)

  • 은종현;이준석;박승환;김동현;천진성;유호욱
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.293-298
    • /
    • 2018
  • 본 논문에서는 항공기용 스트링거(Stringer)로 사용하기 위한 브레이드 복합재료(Braided composites)의 물성에 대해 연구하였다. 브레이드 프리폼(braid preform)을 $30^{\circ}$, $45^{\circ}$, $60^{\circ}$로 제작하기 위해 드럼 와인더 속도, 브레이드 속도, 멘드럴 직경과 같은 공정변수들을 정량화시켰고, 에폭시 수지 종류를 TGDDM, YD-128로 브레이드 프리폼에 다르게 적용하여 각도에 따른 브레이드 복합재료의 인장강도, 굽힘강도를 섬유부피분율에 따라 규명하였으며, TGA 분석으로 열적 특성과 에폭시 수지의 분해 온도를 조사하였다. 그 결과 브레이드 프리폼의 각도가 낮을수록 인장강도와 굽힘강도가 향상됨을 확인하였고, 분자량이 높은 에폭시 수지를 사용할 때 물리적 성질이 향상되었다.

3차원 2-Step Braided 복합재료의 탄성 계수 예측 (Elastic Properties of 2-Step Braided Composites)

  • 변준형
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.45-56
    • /
    • 1993
  • In order to acquire more comprehensive understanding of textile composites, the processing-microstructure-performance relationships for a variety of material systems, reinforcing schemes and processing technologies should be established. In this paper, emphasis is placed on the integrated analysis of three-dimensional (3-D) 2-step braided composites. The analysis includes the geometric model of unit cells, identification of key process parameters and processing windows due to limiting geometries of yarn jamming, and prediction of elastic constants of the composite. The coordinate transformation and averaging of stiffness and compliance constants are utilized in the prediction of elastic constants. Since there are several types of unit cells in the thickness and width directions of the composites, characterization of mechanical properties is based upon the macro-cell, which occupies the entire cross-section and the unit pitch length of the sample. The performance map demonstrates that a wide range of elastic properties can be achieved by varying the geometric and process parameters.

  • PDF

셀방법과 유한요소법을 이용한 하이브리드 삼차원 브레이드 섬유강화복합재료의 역학적 성질 예측 (Prediction of Mechanical Properties of Hybrid 3D Braided Fiber Reinforced Composites Using Method of Cells and Finite Element Method)

  • 김지훈;류한선;이명한;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.151-154
    • /
    • 2004
  • A procedure of predicting mechanical properties of braided composites was developed. Mechanical behaviors of yams and resin in the composites were represented by elastoplastic constitutive relations. The mechanical properties of the hybrid braided composites were calculated using Method of cells and finite element method. Predictions of finite element method showed good agreement with experimental data but Method of cells predicted lower values than those of the experiment.

  • PDF