• Title/Summary/Keyword: Braced frame

Search Result 200, Processing Time 0.023 seconds

Seismic Performance Evaluation of Recentering Braced Frame Structures Using Superelastic Shape Memory Alloys - Nonlinear Dynamic Analysis (초탄성 형상기억합금을 활용한 자동복원 가새 프레임 구조물의 내진성능 평가 - 비선형 동적해석)

  • Ban, Woo-Hyun;Hu, Jong-Wan;Ju, Young-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2020
  • Korea was recognized as a relatively safe area for earthquake. However, due to considerable damage to facilities caused by the earthquake in Gyeongju and Pohang, interest in the maintenance and repair of structures is increasing. So interest in vibration damping technology applicable to existing structures is also increasing. However, vibration damping technology has a problem in that its usability is reduced due to damage of the damping device when a strong earthquake occurs. Recently, in order to solve such a problem, study is being conducted to apply a superelastic shape memory alloys (SSMA) capable of recentering bracing. Therefore, in this study, nonlinear dynamic analysis is performed to evaluate the seismic performance of the buckling-restrained braced frame (BRBF) applied SSMA to bracing.

The Discrete Optimum Design of Steel Frame Considering Material and Geometrical Nonlinearties (재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계)

  • Chang, Chun Ho;Park, Moon Ho;Lee, Hae Kyoung;Park, Soon Eung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.317-328
    • /
    • 2000
  • The objective of the research is to develop an algorithm for the optimum design of two-dimensional braced steel frames using an advanced analysis, which considers both material and geometric nonlinearties. Since both nonlinearties are considered in analysis process, Optimum design algorithm which does not require to calculate K-factor is presented. A multi-level discrete optimization technique with two parameters that uses the information of structural system and separate member has been developed. The structural analysis is performed by the relined plastic-hinge method which is based on zero-length plastic hinge theory. Optimization problem are formulated by AISC-LRFD code. The feasibility, validity and efficiency of the developed algorithm is demonstrated by the results of the braced steel frame.

  • PDF

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.

Energy-Based Seismic Design of Buckling-Restrained Braced Frame Using Hysteretic Energy Spectrum (이력에너지 스펙트럼을 이용한 비좌굴 가새골조의 내진설계)

  • 최현훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.63-69
    • /
    • 2003
  • In this study seismic design procedure for buckling-restrained braced frame systems was proposed using hysteretic energy spectrum and accumulated ductility spectrum constructed from single degree of freedom systems. The hysteretic energy spectra and accumulated ductility spectra corresponding to target ductility ratio were constructed first. The cross-sectional area of braces required to meet a given target displacement was obtained by equating the hysteretic energy demand to the accumulated plastic energy dissipated by braces. Twenty earthquake records were utilized to construct the spectra and to verify the validity of the design procedure. According to analysis results of three- and eight-story buckling-restrained braced frame structures designed using the proposed method, the mean values for the top story displacement correspond well with the given performance target displacements. Also, the inter-story drifts turned out to be relatively uniform over the structure height, which is desirable because uniform inter-story drifts indicate uniform damage distribution. Therefore if was concluded that the proposed energy-based method could be a reliable alternative to conventional strength-based design procedure for structures with buckling-restrained braces.

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

Determining elastic lateral stiffness of steel moment frame equipped with elliptic brace

  • Habib Ghasemi, Jouneghani;Nader, Fanaie;Mohammad Talebi, Kalaleh;Mina, Mortazavi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.293-318
    • /
    • 2023
  • This study aims to examine the elastic stiffness properties of Elliptic-Braced Moment Resisting Frame (EBMRF) subjected to lateral loads. Installing the elliptic brace in the middle span of the frames in the facade of a building, as a new lateral bracing system not only it can improve the structural behavior, but it provides sufficient space to consider opening it needed. In this regard, for the first time, an accurate theoretical formulation has been developed in order that the elastic stiffness is investigated in a two-dimensional single-story single-span EBMRF. The concept of strain energy and Castigliano's theorem were employed to perform the analysis. All influential factors were considered, including axial and shearing loads in addition to the bending moment in the elliptic brace. At the end of the analysis, the elastic lateral stiffness could be calculated using an improved relation through strain energy method based on geometric properties of the employed sections as well as specifications of the utilized materials. For the ease of finite element (FE) modeling and its use in linear design, an equivalent element was developed for the elliptic brace. The proposed relation was verified by different examples using OpenSees software. It was found that there is a negligible difference between elastic stiffness values derived by the developed equations and those of numerical analysis using FE method.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

Comparison of shear lag in structural steel building with framed tube and braced tube

  • Mazinani, Iman;Jumaat, Mohd Zamin;Ismail, Z.;Chao, Ong Zhi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.297-309
    • /
    • 2014
  • Under lateral loads Framed Tube (FT) system exhibits reduction of cantilever efficiency due to the effect of shear lag. Braced Tube (BT) represents a valuable solution to overcome shear lag problems by stiffening the exterior frame with diagonal braced members. This study investigates the effect of shear lag on BT and FT under wind load. Shear lag and top-level displacement results are compared with previous findings by researchers on FT and BT systems. The investigation of the effect of various configurations in BT on the reduction the shear lag is another objective of this study. The efficiency of each structure is evaluated using the linear response spectrum analysis to obtain shear lag. STADD Pro software is used to run the dynamic analysis of the models. Results show there is relatively less shear lag in all the BT configurations compared to the FT structural system. Moreover, the comparison of the obtained result with those derived by previous studies shows that shear lag is not proportional to lateral displacement. With respect to results, optimum BT configuration in term of lower shear lag caused by lateral loads is presented.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.